Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4119-4130.DOI: 10.16085/j.issn.1000-6613.2018-2245
• Materials science and technology • Previous Articles Next Articles
Received:
2018-11-16
Online:
2019-09-05
Published:
2019-09-05
Contact:
Qi JIANG
通讯作者:
江琦
作者简介:
马瑞(1995—),女,硕士研究生,研究方向为超细粉体材料和功能材料。E-mail:基金资助:
CLC Number:
Rui MA,Qi JIANG. Superhydrophobic materials constructed from inorganic specialsurface structure[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4119-4130.
马瑞,江琦. 由无机特殊表面结构构造的超疏水材料[J]. 化工进展, 2019, 38(9): 4119-4130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2245
1 | DYETT B P , WU A H , LAMB R N . Mechanical stability of surface architecture-consequences for superhydrophobicity[J]. Applied Materials & Interfaces, 2014, 6(21): 18380-18394. |
2 | NEINHUIS C , BARTHLOTT W . Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. |
3 | BARTHLOTT W , NEINHUIS C . Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
4 | 徐建海, 李梅, 赵燕, 等 . 具有微纳米结构超疏水表面润湿性的研究[J]. 化学进展, 2006, 18(11): 1425-1433. |
XU J H , LI M , ZHAO Y , et al . Advance of wetting behavior research on the superhydrophobic surface with micro- and nano-structures[J]. Progress in Chemistry, 2006, 18(11): 1425-1433. | |
5 | NOSONOVSKY M , BHUSHAN B . Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering[J]. Current Opinion in Colloid & Interface Science, 2009, 14(4): 270-280. |
6 | 王文涛, 滕飞, 朱松丽, 等 . 中国应对全球气候治理的绿色发展战略新思考[J]. 中国人口·资源与环境, 2018, 28(7): 1-6. |
WANG W T , TENG F , ZHU S L , et al . New reflections on green development strategy of China addressing on the global climate governance[J]. China Population, Resources and Environment, 2018, 28(7): 1-6. | |
7 | ZHANG H , LU X , XIN Z , et al . Preparation of superhydrophobic polybenzoxazine/SiO2 films with self-cleaning and ice delay properties[J]. Progress in Organic Coatings, 2018, 123: 254–260. |
8 | CHEN K L , GOU W W , XU L , et al . Low cost and facile preparation of robust multifunctional coatings with self-healing superhydrophobicity and high conductivity[J]. Composites Science and Technology, 2018, 156: 177-185. |
9 | 黄炼, 袁秋枫, 程杰 . 船舶设计中节能减排技术的应用[J].山东工业技术, 2018 (8): 14. |
HUANG L , YUAN Q F , CHENG J . Application of energy saving and emission reduction technology in ship design[J]. Industrial Technology of Shandong, 2018 (8): 14. | |
10 | TUO Y J, CHEN W P , ZHANG H F , et al . One-step hydrothermal method to fabricate drag-reduction superhydrophobic surface on aluminum foil[J]. Applied Surface Science, 2018, 446: 230-235. |
11 | ZHANG B B , XU W C , ZHU Q J , et al . Ultrafast one step construction of non-fluorinated superhydrophobic aluminum surfaces with remarkable improvement of corrosion resistance and anti-contamination[J]. Journal of Colloid and Interface Science, 2018, 532: 201-209. |
12 | 贾致通, 戚高晟, 金铭, 等 . 水利工程中新型超疏水材料应用前景展望[J].绿色科技, 2018 (8): 182-184. |
JIA Z T , QI G S , JIN M , et al . Application prospect of new superhydrophobic materials in hydraulic engineering[J]. Journal of Green Science and Technology, 2018 (8): 182-184. | |
13 | WEN Q , GUO Z G . Recent advances in the fabrication of superhydrophobic surfaces[J]. Chemistry Letters, 2016, 45(10): 1134-1149. |
14 | DORRER C , RÜHE J . Some thoughts on superhydrophobic wetting[J]. Soft Matter, 2009, 5(1): 51-61. |
15 | 刘峰, 王成毓 . 木材仿生超疏水功能化制备方法[J]. 科技导报, 2016, 34(19): 120-126. |
16 | LIU F , WANG C Y . Research progress and preparation methods of biomimetic functional superhydrophobic wood surfaces[J]. Science & Technology Review, 2016, 34(19): 120-126. |
17 | YU S , GUO Z G , LIU W M . Biomimetic transparent and superhydrophobiccoatings: from nature and beyond nature[J]. Chemical Communications, 2015, 51(10): 1775-1794. |
18 | VAZIRINASAB E , JAFARI R , MOMEN G . Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surface & Coatings Technology, 2018, 341: 40-56. |
19 | CELIA E , DARMANIN T , GIVENCHY E T , et al . Recent advances in designing superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2013, 402: 1-18. |
20 | JEEVAHAN J , CHANDRASEKARAN M , JOSEPH G B , et al . Superhydrophobic surfaces: a review on fundamentals,applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. |
21 | 忻文 . 自清洁涂层:汽车新型涂料技术[J]. 汽车与配件, 2015, 23: 72. |
XIN W . Self-cleaning coating: new automotive coating technology[J]. Automobile & Parts, 2015, 23: 72. | |
22 | GOLOVIN K , BOBAN M , MABRY J M , et al . Designing self-healing superhydrophobic surfaces with exceptional mechanical durability[J]. ACS Applied Materials & Interfaces, 2017, 9(12):11212-11223. |
23 | 宋海明 . 宁波材料所高效溢油应急吸附材料产业化新进展[EB/OL]. [2019-01-09]. . |
SONG H M . New progress in the industrialization of high-efficiency oil spill emergency adsorption materials in Ningbo Materials[EB/OL]. [2019-01-09]. . | |
24 | LIU H , HUANG J Y , CHEN Z , et al . Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330: 26-35. |
25 | RAJ R M, RAJ V . Fabrication of superhydrophobic coatings for combating bacterial colonization on Al with relevance to marine and medical applications[J]. Journal of Coatings Technology and Research, 2018, 15(1): 51-64. |
26 | LIU Q Q , ZOU H M , SHAO Y L , et al . Stable superhydrophobic surface based on low-density polyethylene/ethylene-propylene-diene terpolymer thermoplastic vulcanizate[J]. Journal of Applied Polymer Science, 2018, 135(19), 46241. |
27 | FIHRI A , BOVERO E , AL-SHAHRANI A , et al . Recent progress in superhydrophobic coatings used for steel protection: a review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 378-390. |
28 | WU L K , ZHANG X F , HU J M . Corrosion protection of mild steel by one-step electrodeposition of superhydrophobic silica film[J]. Corrosion Science, 2014, 85: 482-487. |
29 | REZAE S , MANOUCHERI I , MORADIAN R , et al . One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication [J]. Chemical Engineering Journal, 2014, 252: 11-16. |
30 | QIAN Z Q , WANG S D , YE X S , et al . Corrosion resistance and wetting properties of silica-based superhydrophobic coatings on AZ31B Mg alloy surfaces[J]. Applied Surface Science, 2018, 453: 1-10. |
31 | HUANG Y F , YI S P , LV Z S , et al . Facile fabrication of superhydrophobic coatings based on two silica sols[J]. Colloid And Polymer Science, 2016, 294(9): 1503-1509. |
32 | SU X J , LI H Q , LAI X J , et al . Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil-water separation[J]. Applied Materials & Interfaces, 2017, 9(33): 28089-28099. |
33 | FARAZ M , ANSARI M Z , KHARE N . Synthesis of nanostructure manganese doped zinc oxide/polystyrene thin films with excellent stability, transparency and superhydrophobicity[J]. Materials Chemistry and Physics, 2018, 211: 137-143. |
34 | VELAYI E , NOROUZBEIGI R . Synthesis of hierarchical superhydrophobic zinc oxide nano-structures for oil/water separation[J]. Ceramics International, 2018, 44(12): 14202-14208. |
35 | LI H , YU S R , HU J H , et al . A robust superhydrophobic Zn coating with ZnO nanosheets on steel substrate and its self-cleaning property [J]. Thin Solid Films, 2018, 666:100-107. |
36 | WU Y Z , CHEN C , LIU Y X , et al . Fast fabrication of a self-cleaning coating constructed with scallion-like ZnO using a perfect colloidal monolayer enabled by a predictive self-assembly method[J]. Journal of Materials Chemistry A, 2017, 5(12): 5943-5951. |
37 | HONG S H , KIM M H , YUN H W , et al . Solution-processed fabrication of superhydrophobic hierarchical zinc oxide nanostructures via nanotransfer printing and hydrothermal growth[J]. Surface & Coatings Technology, 2017, 331: 189-195. |
38 | BOYER Q , DULUARD S , TENAILLEAU C , et al . Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol-gel matrix[J]. Journal of Materials Science, 2017, 52(21): 12677-12688. |
39 | 崔锦峰, 包雪梅, 秦晓娟, 等 . 超疏水纳米氧化锌材料的研究进展[J]. 化工新型材料, 2014, 42(6): 18-20. |
CUI J F , BAO X M , QIN X J , et al . Research progress of superhydrophobic ZnO material with nanostructures[J]. New Chemical Materials, 2014, 42(6): 18-20. | |
40 | CHAGAS G R , WEIBEL D E . UV-induced switchable wettability between superhydrophobic and superhydrophilic polypropylene surfaces with an improvement of adhesion properties[J]. Polymer Bulletin, 2017, 74(6): 1965-1978. |
41 | GAO S W , HUANG J Y , LI S H , et al . Facile construction of robust fluorine-free superhydrophobic TiO2@fabrics with excellent anti-fouling, water-oil separation and UV-protective properties[J]. Materials & Design, 2017, 128: 1-8. |
42 | CHEN D Z , MAI Z H, LIU X , et al . UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2 [J]. Cellulose, 2018, 25(6): 3635-3647. |
43 | LI H , YANG J , LI P , et al . A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property[J]. Carbohydrate Polymers, 2017, 160: 9-17. |
44 | LU X , HU Y C . Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance[J]. BioResources, 2016, 11(2): 4605-4620. |
45 | LI C L , SUN Y C , CHENG M , et al . Fabrication and characterization of a TiO2 /polysiloxane resin composite coating with full-thickness super-hydrophobicity[J]. Chemical Engineering Journal, 2018, 333: 361-369. |
46 | 赵利, 张丽东, 徐文华, 等 . 碳纳米管超疏水表面的研究进展[J].化工新型材料, 2013, 41(3): 155-157. |
ZHAO L , ZHANG L D , XU W H , et al . Research progress in preparing of superhydrophobic surface by carbon nanotubes[J]. New Chemical Materials, 2013, 41(3): 155-157. | |
47 | WANG P W , ZHAO T Y , BIAN R X , et al . Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures[J]. ACS Nano, 2017, 11(12): 12385-12391. |
48 | HSIAO C H , LIN J H . Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts[J]. Carbon, 2017, 124: 637-641. |
49 | BELSANTI L , OGIHARA H , MAHANTY S , et al . Electrochemical behaviour of superhydrophobic coating fabricated by spraying a carbon nanotube suspension[J]. Bulletin of Materials Science, 2015, 38(2): 579-582. |
50 | LIU Y , ZHU Y A , YUAN D Z . Fabrication of superhydrophobic and conductive CNT/KB/PBZ nanocomposites[J]. High Performance Polymers, 2017, 29(8): 937-942. |
51 | CHEN F F , JIA Y , WANG Q G , et al . Strong and super-hydrophobic hybrid carbon nanotube films with superior loading capacity[J]. Carbon, 2018, 137: 88-92. |
52 | STEVENS K A , ESPLIN C D , DAVIS T M , et al . Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry[J]. Applied Physics Letters, 2018, 112(21): 211602. |
53 | KIM J H , MIRZAEI A , KIM H W , et al . Realization of superhydrophobic aluminum surfaces with novel micro-terrace nano-leaf hierarchical structure[J]. Applied Surface Science, 2018, 451: 207-217. |
54 | WEI X L , LI N , YI W J , et al . High performance super-hydrophobic ZrO2-SiO2 porous ceramics coating with flower-like CeO2 micro/nano-structure[J]. Surface & Coatings Technology, 2017, 325: 565-571. |
55 | LAI D , KONG G , CHE C S . Synthesis and corrosion behavior of ZnO/SiO2 nanorod-sub microtube superhydrophobic coating on zinc substrate[J]. Surface & Coatings Technology, 2017, 315: 509-518. |
56 | FARSHAD B , HOSSEIN K , MASOUD S N . Flower-like CuO/ZnO hybrid hierarchical nanostructures grown on copper substrate:glycothermal synthesis, characterization, hydrophobic and anticorrosion properties[J]. Materials, 2017, 10(7): 697. |
57 | CAO C Y , CHENG J . Fabrication of superhydrophobic copper stearate@Fe3O4 coating on stainless steel meshes by dip-coating for oil/water separation[J]. Surface & Coatings Technology, 2018, 349: 296-302. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[3] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[4] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[5] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[6] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[7] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[8] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[9] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[10] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[11] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[12] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[13] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[14] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[15] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |