1 |
WUW, ZHAOW, WUY, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019, 465(1): 279-287.
|
2 |
ZHANGY Q, LINC, LINQ, et al. CuI-BiOI/Cu film for enhanced photo-induced charge separation and visible-light antibacterial activity[J]. Applied Catalysis B: Environmental, 2018, 235(11): 238-245.
|
3 |
姜国飞, 李旭飞, 吕艳, 等. Cu/ZnO-RGO的抗菌性能及应用[J]. 中国环境科学, 2018, 38(8): 3121-3128.
|
|
JIANGG F, LIX F, LUY, et al. Antibacterial properties and application of Cu/ZnO-RGO[J]. Chinese Environmental Science, 2018, 38(8): 3121-3128.
|
4 |
DUKESD, GONZALESH B, RAVIS, et al. Quantifying postfire aeolian sediment transport using rare earth element tracers[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(1): 288-299.
|
5 |
邱治文, 孙晓刚, 庞志鹏, 等. 稀土氧化物掺杂碳纳米管屏蔽纸[J]. 化工进展, 2018, 37(1): 236-241.
|
|
QIUZ W, SUNX G, PANGZ P, et al. Rare earth oxide doped carbon nanotube shielding paper[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 236-241.
|
6 |
JIANGM, ZHANGB, TANGX, et al. Preparation and characterization of hybrid antimicrobial materials based on Zn-Lu composites[J]. Journal of Materials Science, 2018, 53(21): 14922-14932.
|
7 |
SARATALER G, GHODAKEG S, SHINDES K, et al. Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of reactive green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer)[J]. Journal of Environmental Management, 2018, 223(10): 1086-1097.
|
8 |
SARMAD D, BAOC N R. XPES studies of oxides of second-and third-row transition metals including rare earths[J]. Journal of Electron Spetroscopy and Related Phenomena, 1980, 20(1): 25-45.
|
9 |
MARRG V. Handbook on synchrotron radiation: vacuum ultraviolet and soft X-ray processes[M]// DEHMER J L. AMSTERDAM: Elsevier Science Publishers B V, 1987: 260-297.
|
10 |
XIAC, CAID, TANJ, et al. Synergistic effects of N/Cu dual ions implantation on stimulating antibacterial ability and angiogenic activity of titanium[J]. ACS Biomaterials Science & Engineering, 2018, 4(9): 3185-3193.
|
11 |
WANGW, ZHUL, LVP, et al. Novel candy-like Cu4O3 microstructure: facile wet chemical synthesis, formation mechanism, and good long-term antibacterial activities[J]. ACS Applied Materials & Interfaces. 2018, 10(43): 37287-37297.
|
12 |
何欢承, 王快社, 胡平, 等. 掺杂稀土元素镧对TZM合金板材再结晶行为的影响[J]. 稀有金属材料与工程, 2015, 44(5): 1297-1300.
|
|
HEH C, WANGK S, HUP, et al. Effect of doping rare earth element lanthanum on recrystallization behavior of TZM alloy sheet [J]. Rare Metal Materials and Engineering, 2015, 44 (5): 1297-1300.
|
13 |
刘鹏, 江海涛, 段晓鸽, 等. 稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响[J]. 材料工程, 2014, 59(12): 1-10.
|
|
LIUP, JIANGH T, DUANX G, et al. Effects of rare earth elements Y and Ce on microstructure and room temperature formability of hot rolled Mg-1.5Zn magnesium alloy[J]. Journal of Materials Engineering, 2014, 59(12): 1-10.
|
14 |
文智, 易丹青, 王斌, 等. 稀土对T91耐热钢动态再结晶行为影响[J]. 北京科技大学学报, 2013, 35(8): 1000-1006.
|
|
WENZ, YID Q, WANGB, et al. Effect of rare earth on dynamic recrystallization behavior of T91 heat resistant steel [J]. Journal of University of Science and Technology Beijing, 2013, 35 (8): 1000-1006.
|
15 |
张乐, 高雄厚, 孙书红. 稀土含量对Y型分子筛物化参数的综合影响[J]. 稀土, 2013, 34(4): 1-6.
|
|
ZHANGL, GAOX H, SUNS H. The comprehensive effect of rare earth content on the physical properties of Y-type molecular sieves [J]. Rare Earth, 2013, 34 (4): 1-6.
|
16 |
屈敏, 刘鑫, 崔岩, 等. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
|
|
QUM, LIUX, CUIY, et al. Effect of rare earth elements on microstructure and properties of in-situ synthesized TiB2/Al composites [J]. Journal of Materials Engineering, 2018, 46 (3): 98-104.
|
17 |
RAGHUPATHIK R, KOODALIR T, MANNAA C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27(7): 4020-4028.
|
18 |
ZUOS, CHENY, LIUW, et al. A facile and novel construction of attapulgite/Cu2O/Cu/g-C3N4 with enhanced photocatalytic activity for antibiotic degradation[J]. Ceramics International, 2017, 43(3): 3324-3329.
|
19 |
SELVAMANIA, SHANTHIK, SANTHANAARAJD, et al. Effective removal of automobile exhausts over flower-like Ce1-xCuxO2 nanocatalysts exposed active {100} plane[J]. Journal of Rare Earths, 2018, 60(6): 603-612.
|
20 |
张凯, 钱君超, 陈志刚, 等. 大比表面积、高孔隙率多孔仿生CeO2-CuO光催化剂[J]. 材料导报, 2016, 30(20): 39-43.
|
|
ZHANGK, QIANJ C, CHENZ G, et al. Large specific surface area, high porosity porous biomimetic CeO2-CuO photocatalyst [J]. Materials Review, 2016, 30(20): 39-43.
|
21 |
MERSIANH, ALIZADEHM, HADIN. Synthesis of zirconium doped copper oxide (CuO) nanoparticles by the pechini route and investigation of their structural and antibacterial properties[J]. Ceramics International, 2018, 44(16): 20399-20408.
|
22 |
DIL N N, SADEGHIM. Free radical synthesis of nanosilver/gelatin-poly(acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(Ⅱ) metal ions[J]. Journal of Hazardous Materials, 2018, 351(6): 38-53.
|
23 |
APPLEROTG, LEIIOUCHEJ, LIPOVSKYA, et al. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress[J]. Small, 2012, 8(21): 3326-3337.
|