Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3473-3481.DOI: 10.16085/j.issn.1000-6613.2018-2367
• Applied technology • Previous Articles Next Articles
Sheng CHEN1,2,3(),Xinbo CAO2(),Meng ZHAO3,Cenfan LIU1,Haoyuan KANG1,Yong WANG2(),Wei WANG3,Guoshan XIE1
Received:
2018-12-06
Online:
2019-07-05
Published:
2019-07-05
Contact:
Xinbo CAO,Yong WANG
陈昇1,2,3(),曹新波2(),赵梦3,刘岑凡1,康昊源1,王勇2(),王维3,谢国山1
通讯作者:
曹新波,王勇
作者简介:
陈昇(1987—),男,高级工程师,博士,研究方向为多相流、乙烯生产工艺。E-mail:<email>chen_sheng1987@sina.com</email>。
基金资助:
CLC Number:
Sheng CHEN, Xinbo CAO, Meng ZHAO, Cenfan LIU, Haoyuan KANG, Yong WANG, Wei WANG, Guoshan XIE. Simulation and optimization of MTO front-end depropanizer separation process[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3473-3481.
陈昇, 曹新波, 赵梦, 刘岑凡, 康昊源, 王勇, 王维, 谢国山. MTO前脱丙烷分离流程模拟及优化[J]. 化工进展, 2019, 38(07): 3473-3481.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2367
组分 | 摩尔分数/% | 组分 | 摩尔分数/% |
---|---|---|---|
H2 | 1.9185 | 丙烯 | 31.5652 |
CO | 0.1268 | 丙炔 | 0.0003 |
CO2 | 0.0286 | 丙二烯 | 0.0002 |
O2 | 0.0206 | 丁烷 | 0.3174 |
N2 | 1.4706 | 异丁烷 | 0.0225 |
H2O | 4.4732 | 异丁烯 | 0.3463 |
甲烷 | 3.6932 | 1-丁烯 | 1.6848 |
甲醇 | 0.0403 | 2-丁烯 | 4.0518 |
乙炔 | 0.0025 | 1,3-丁烯 | 0.2173 |
乙烷 | 0.9156 | 丁烯 | 0.0037 |
乙烯 | 45.2203 | 戊烷 | 0.9853 |
环丙烷 | 0.0013 | 已烷 | 0.2261 |
丙烷 | 2.4547 | DME | 0.2090 |
组分 | 摩尔分数/% | 组分 | 摩尔分数/% |
---|---|---|---|
H2 | 1.9185 | 丙烯 | 31.5652 |
CO | 0.1268 | 丙炔 | 0.0003 |
CO2 | 0.0286 | 丙二烯 | 0.0002 |
O2 | 0.0206 | 丁烷 | 0.3174 |
N2 | 1.4706 | 异丁烷 | 0.0225 |
H2O | 4.4732 | 异丁烯 | 0.3463 |
甲烷 | 3.6932 | 1-丁烯 | 1.6848 |
甲醇 | 0.0403 | 2-丁烯 | 4.0518 |
乙炔 | 0.0025 | 1,3-丁烯 | 0.2173 |
乙烷 | 0.9156 | 丁烯 | 0.0037 |
乙烯 | 45.2203 | 戊烷 | 0.9853 |
环丙烷 | 0.0013 | 已烷 | 0.2261 |
丙烷 | 2.4547 | DME | 0.2090 |
i | j | kija | kijb | kijc | kijd |
---|---|---|---|---|---|
C3H6 | DME | 0.2239 | -115.2728 | 15744.2692 | 0 |
C3H8 | DME | 0.28966 | -140.7751 | 20595.3379 | 0 |
i | j | kija | kijb | kijc | kijd |
---|---|---|---|---|---|
C3H6 | DME | 0.2239 | -115.2728 | 15744.2692 | 0 |
C3H8 | DME | 0.28966 | -140.7751 | 20595.3379 | 0 |
类别 | 乙烯 | 丙烯 | ||
---|---|---|---|---|
工业值 | 预测值 | 工业值 | 预测值 | |
氢/% | 0.0004 | 0.0004 | 0 | 0 |
甲烷/% | 0.0029 | 0.0015 | 0 | 0 |
甲醇/% | 0.0000 | 0 | 0 | 0 |
乙炔/% | 0.0000 | 0 | 0 | 0 |
乙烷/% | 0.0348 | 0.0361 | 0.0128 | 0.0128 |
乙烯/% | 99.962 | 99.962 | 0.0006 | 0.0008 |
环丙烷/% | 0 | 0 | 0 | 0 |
丙烷/% | 0 | 0 | 0.3666 | 0.3664 |
丙烯/% | 0 | 0 | 99.62 | 99.62 |
总质量流量/kg·h-1 | 41933 | 41933.0 | 40646 | 40656.4 |
温度/℃ | -34.3 | -34.31 | 45.6 | 45.23 |
表压/MPa | 1.632 | 1.633 | 2.060 | 2.060 |
回收率 | 99.96% | 99.965% | 99.8% | 99.8% |
类别 | 乙烯 | 丙烯 | ||
---|---|---|---|---|
工业值 | 预测值 | 工业值 | 预测值 | |
氢/% | 0.0004 | 0.0004 | 0 | 0 |
甲烷/% | 0.0029 | 0.0015 | 0 | 0 |
甲醇/% | 0.0000 | 0 | 0 | 0 |
乙炔/% | 0.0000 | 0 | 0 | 0 |
乙烷/% | 0.0348 | 0.0361 | 0.0128 | 0.0128 |
乙烯/% | 99.962 | 99.962 | 0.0006 | 0.0008 |
环丙烷/% | 0 | 0 | 0 | 0 |
丙烷/% | 0 | 0 | 0.3666 | 0.3664 |
丙烯/% | 0 | 0 | 99.62 | 99.62 |
总质量流量/kg·h-1 | 41933 | 41933.0 | 40646 | 40656.4 |
温度/℃ | -34.3 | -34.31 | 45.6 | 45.23 |
表压/MPa | 1.632 | 1.633 | 2.060 | 2.060 |
回收率 | 99.96% | 99.965% | 99.8% | 99.8% |
分离流程 | 高压/中压脱丙烷塔 | 低压脱丙烷塔/凝液汽提塔 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
p0/MPa | Ttop/℃ | Tb/℃ | Wc/MW?h-1 | Wr/MW?h-1 | p0/MPa | Ttop/℃ | Tb/℃ | Wc/MW?h-1 | Wr/MW?h-1 | |
Lummus | 2.0 | 14.0 | 78.0 | 4.33 | 5.22 | 0.72 | 17.0 | 76.3 | 2.26 | 2.29 |
Wison | 1.3 | 0.8 | 97.6 | 4.39 | 3.71 | 0.76 | 13.9 | 81.0 | — | 3.43 |
KBR | 1.3 | 0.8 | 97.6 | 4.40 | 3.72 | 0.70 | 11.3 | 77.7 | — | 3.33 |
分离流程 | 高压/中压脱丙烷塔 | 低压脱丙烷塔/凝液汽提塔 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
p0/MPa | Ttop/℃ | Tb/℃ | Wc/MW?h-1 | Wr/MW?h-1 | p0/MPa | Ttop/℃ | Tb/℃ | Wc/MW?h-1 | Wr/MW?h-1 | |
Lummus | 2.0 | 14.0 | 78.0 | 4.33 | 5.22 | 0.72 | 17.0 | 76.3 | 2.26 | 2.29 |
Wison | 1.3 | 0.8 | 97.6 | 4.39 | 3.71 | 0.76 | 13.9 | 81.0 | — | 3.43 |
KBR | 1.3 | 0.8 | 97.6 | 4.40 | 3.72 | 0.70 | 11.3 | 77.7 | — | 3.33 |
项目 | Lummus | Wison | KBR |
---|---|---|---|
高压蒸汽(10.0MPa, 308℃)[ | |||
产品气压缩机实际功/kW?h-1 | 8251.822 | 8878.854 | 8918.695 |
压缩机透平高压蒸汽消耗量/t?h-1 | 34.438 | 37.055 | 37.221 |
高压蒸汽能耗折算标准/MJ?t-1 | 3852 | 3852 | 3852 |
高压蒸汽能耗/MJ?h-1 | 132655.176 | 142735.860 | 143375.292 |
低压蒸汽(0.3MPa, 152℃)[ | |||
低压蒸汽消耗量/t?h-1 | 3.165 | 9.567 | 9.601 |
低压蒸汽能耗折算标准/MJ?t-1 | 2763 | 2763 | 2763 |
低压蒸汽能耗/MJ?h-1 | 8744.895 | 26433.621 | 26527.563 |
循环水[ | |||
循环水消耗量/t?h-1 | 1128.334 | 1089.42 | 1110.188 |
循环水能耗折算标准/MJ?t-1 | 4.19 | 4.19 | 4.19 |
循环水能耗/MJ?h-1 | 4727.719 | 4564.670 | 4651.688 |
能耗总计/MJ?h-1 | 146127.790 | 173734.151 | 174554.543 |
项目 | Lummus | Wison | KBR |
---|---|---|---|
高压蒸汽(10.0MPa, 308℃)[ | |||
产品气压缩机实际功/kW?h-1 | 8251.822 | 8878.854 | 8918.695 |
压缩机透平高压蒸汽消耗量/t?h-1 | 34.438 | 37.055 | 37.221 |
高压蒸汽能耗折算标准/MJ?t-1 | 3852 | 3852 | 3852 |
高压蒸汽能耗/MJ?h-1 | 132655.176 | 142735.860 | 143375.292 |
低压蒸汽(0.3MPa, 152℃)[ | |||
低压蒸汽消耗量/t?h-1 | 3.165 | 9.567 | 9.601 |
低压蒸汽能耗折算标准/MJ?t-1 | 2763 | 2763 | 2763 |
低压蒸汽能耗/MJ?h-1 | 8744.895 | 26433.621 | 26527.563 |
循环水[ | |||
循环水消耗量/t?h-1 | 1128.334 | 1089.42 | 1110.188 |
循环水能耗折算标准/MJ?t-1 | 4.19 | 4.19 | 4.19 |
循环水能耗/MJ?h-1 | 4727.719 | 4564.670 | 4651.688 |
能耗总计/MJ?h-1 | 146127.790 | 173734.151 | 174554.543 |
分离流程 | 塔 | p0/MPa | Ttop/℃ | Tb/℃ | Wm1/MW?h-1 | Wm2/MW?h-1 | Wm3/MW?h-1 | Wr/MW?h-1 | ma/kg?h-1 |
---|---|---|---|---|---|---|---|---|---|
Lummus | 脱甲烷塔 | 2.62 | -37 | 14.3 | 0.084 | 0.135 | 0.25 | 4.36 | 14920 |
Wison | 油吸收塔 | 2.62 | -37 | -26.2 | 0.067 | 0.148 | — | — | 11554 |
预切割塔 | 2.68 | -18.7 | 13.4 | 0.285 | — | — | 4.25 | — | |
KBR | 吸收段 | 2.62 | -37 | -26.3 | 0.068 | 0.158 | — | — | 11554 |
汽提段 | 2.68 | -18.7 | 13.4 | 0.288 | — | — | 4.23 | — |
分离流程 | 塔 | p0/MPa | Ttop/℃ | Tb/℃ | Wm1/MW?h-1 | Wm2/MW?h-1 | Wm3/MW?h-1 | Wr/MW?h-1 | ma/kg?h-1 |
---|---|---|---|---|---|---|---|---|---|
Lummus | 脱甲烷塔 | 2.62 | -37 | 14.3 | 0.084 | 0.135 | 0.25 | 4.36 | 14920 |
Wison | 油吸收塔 | 2.62 | -37 | -26.2 | 0.067 | 0.148 | — | — | 11554 |
预切割塔 | 2.68 | -18.7 | 13.4 | 0.285 | — | — | 4.25 | — | |
KBR | 吸收段 | 2.62 | -37 | -26.3 | 0.068 | 0.158 | — | — | 11554 |
汽提段 | 2.68 | -18.7 | 13.4 | 0.288 | — | — | 4.23 | — |
分离流程 | mall/kg?h-1 | mloss,乙烯/kg?h-1 | mloss,丙烯/kg?h-1 | mloss,丙烷/kg?h-1 |
---|---|---|---|---|
Lummus | 3994.08 | 0.59 | 15.15 | 613.78 |
Wison | 3990.49 | 0.38 | 15.08 | 612.11 |
KBR | 3990.33 | 0.62 | 13.41 | 613.51 |
分离流程 | mall/kg?h-1 | mloss,乙烯/kg?h-1 | mloss,丙烯/kg?h-1 | mloss,丙烷/kg?h-1 |
---|---|---|---|---|
Lummus | 3994.08 | 0.59 | 15.15 | 613.78 |
Wison | 3990.49 | 0.38 | 15.08 | 612.11 |
KBR | 3990.33 | 0.62 | 13.41 | 613.51 |
分离流程 | 塔 | p0/MPa | Ttop/℃ | Tb/℃ | Wc/MW?h-1 | Wm1/MW?h-1 | Wm2/MW?h-1 | Wm3/MW?h-1 | Wr/MW?h-1 |
---|---|---|---|---|---|---|---|---|---|
Lummus | 脱甲烷塔 | 2.62 | -37 | 14.3 | — | 0.084 | 0.135 | 0.25 | 4.36 |
脱乙烷塔 | 2.6 | -17.37 | 66.73 | 5.42 | — | — | — | 8.01 | |
丙烯精馏塔1# | 1.98 | 52.62 | 59.5 | — | — | — | — | 43.64 | |
丙烯精馏塔2# | 1.76 | 44.8 | 52.53 | 64.86 | — | — | — | 19.44 | |
New | 脱甲烷塔 | 2.62 | -37 | -3.53 | — | 0.103 | 0.513 | 0.793 | 2.33 |
溶剂回收塔 | 2.6 | -17.34 | 73.71 | 2.65 | — | — | — | 6.56 | |
脱乙烷塔 | 1.95 | -34.2 | 51.61 | 3.35 | 4.0 | 1.0 | — | 4.64 | |
丙烯精馏塔1# | 1.98 | 51.14 | 59.49 | — | — | — | — | 36.75 | |
丙烯精馏塔2# | 1.76 | 44.8 | 51.05 | 53.95 | — | — | — | 19.44 |
分离流程 | 塔 | p0/MPa | Ttop/℃ | Tb/℃ | Wc/MW?h-1 | Wm1/MW?h-1 | Wm2/MW?h-1 | Wm3/MW?h-1 | Wr/MW?h-1 |
---|---|---|---|---|---|---|---|---|---|
Lummus | 脱甲烷塔 | 2.62 | -37 | 14.3 | — | 0.084 | 0.135 | 0.25 | 4.36 |
脱乙烷塔 | 2.6 | -17.37 | 66.73 | 5.42 | — | — | — | 8.01 | |
丙烯精馏塔1# | 1.98 | 52.62 | 59.5 | — | — | — | — | 43.64 | |
丙烯精馏塔2# | 1.76 | 44.8 | 52.53 | 64.86 | — | — | — | 19.44 | |
New | 脱甲烷塔 | 2.62 | -37 | -3.53 | — | 0.103 | 0.513 | 0.793 | 2.33 |
溶剂回收塔 | 2.6 | -17.34 | 73.71 | 2.65 | — | — | — | 6.56 | |
脱乙烷塔 | 1.95 | -34.2 | 51.61 | 3.35 | 4.0 | 1.0 | — | 4.64 | |
丙烯精馏塔1# | 1.98 | 51.14 | 59.49 | — | — | — | — | 36.75 | |
丙烯精馏塔2# | 1.76 | 44.8 | 51.05 | 53.95 | — | — | — | 19.44 |
项目 | Lummus | New |
---|---|---|
高压蒸汽(10.0MPa, 308℃)[ | ||
产品气压缩机实际功/kW?h-1 | 8251.822 | 7971.980 |
丙烯制冷压缩机实际功/kW?h-1 | 11134.043 | 11677.128 |
压缩机透平高压蒸汽消耗量/t?h-1 | 80.905 | 82.003 |
高压蒸汽能耗折算标准/MJ?t-1 | 3852 | 3852 |
高压蒸汽能耗/MJ?h-1 | 311646.060 | 315875.556 |
低压蒸汽(0.3MPa, 152℃)[ | ||
低压蒸汽消耗量/t?h-1 | 3.165 | 3.174 |
低压蒸汽能耗折算标准/MJ?t-1 | 2763 | 2763 |
低压蒸汽能耗/MJ?h-1 | 8744.895 | 8769.762 |
循环水[ | ||
循环水消耗量/t?h-1 | 9445.002 | 8952.918 |
循环水能耗折算标准/MJ?t-1 | 4.19 | 4.19 |
循环水能耗/MJ?h-1 | 39574.558 | 37512.726 |
能耗总计/MJ?h-1 | 359965.513 | 362158.044 |
项目 | Lummus | New |
---|---|---|
高压蒸汽(10.0MPa, 308℃)[ | ||
产品气压缩机实际功/kW?h-1 | 8251.822 | 7971.980 |
丙烯制冷压缩机实际功/kW?h-1 | 11134.043 | 11677.128 |
压缩机透平高压蒸汽消耗量/t?h-1 | 80.905 | 82.003 |
高压蒸汽能耗折算标准/MJ?t-1 | 3852 | 3852 |
高压蒸汽能耗/MJ?h-1 | 311646.060 | 315875.556 |
低压蒸汽(0.3MPa, 152℃)[ | ||
低压蒸汽消耗量/t?h-1 | 3.165 | 3.174 |
低压蒸汽能耗折算标准/MJ?t-1 | 2763 | 2763 |
低压蒸汽能耗/MJ?h-1 | 8744.895 | 8769.762 |
循环水[ | ||
循环水消耗量/t?h-1 | 9445.002 | 8952.918 |
循环水能耗折算标准/MJ?t-1 | 4.19 | 4.19 |
循环水能耗/MJ?h-1 | 39574.558 | 37512.726 |
能耗总计/MJ?h-1 | 359965.513 | 362158.044 |
分离流程 | 塔 | 直径/m | 实际塔板数 | 高度/m | 体积/m3 | 质量/t | 备注 |
---|---|---|---|---|---|---|---|
Lummus | 脱甲烷塔 | 1.3/2.3 | 100 | 57.5 | 164.0 | 1295.6 | 在吸收剂循环内 |
脱乙烷塔 | 3.1 | 83 | 47.9 | 361.5 | 2855.85 | 在吸收剂循环内 | |
丙烯精馏塔1# | 5.8 | 59 | 33.9 | 894.2 | 7064.18 | 在吸收剂循环内 | |
丙烯精馏塔2# | 7.1 | 152 | 87.5 | 3463.6 | 27362.44 | 在吸收剂循环内 | |
水洗塔 | 2.2 | 55 | 31.6 | 120.2 | 949.58 | 在吸收剂循环外 | |
高压脱丙烷塔 | 2.5 | 51 | 29.3 | 143.6 | 1134.44 | 在吸收剂循环外 | |
低压脱丙烷塔 | 1.4 | 47 | 27.2 | 41.8 | 330.22 | 在吸收剂循环外 | |
乙烯精馏塔 | 2.9 | 150 | 86.3 | 569.4 | 4498.26 | 在吸收剂循环外 | |
脱丁烷塔 | 1.3 | 70 | 40.3 | 53.4 | 421.86 | 在吸收剂循环外 | |
小计 | 5811.7 | 45912.43 | |||||
New | 脱甲烷塔 | 1.4/1.9 | 100 | 57.5 | 133.4 | 1053.86 | 在吸收剂循环内 |
溶剂回收塔 | 1.9/2.6 | 50 | 28.8 | 161.5 | 1275.85 | 在吸收剂循环内 | |
脱乙烷塔 | 2.5 | 83 | 47.9 | 235.1 | 1857.29 | 在吸收剂循环外 | |
丙烯精馏塔1# | 5.4 | 59 | 33.9 | 775.1 | 6123.29 | 在吸收剂循环外 | |
丙烯精馏塔2# | 6.3 | 152 | 87.5 | 2727.1 | 21544.09 | 在吸收剂循环外 | |
水洗塔 | 2.2 | 55 | 31.6 | 120.2 | 949.58 | 在吸收剂循环外 | |
高压脱丙烷塔 | 2.5 | 51 | 29.3 | 143.6 | 1134.44 | 在吸收剂循环外 | |
低压脱丙烷塔 | 1.4 | 47 | 27.2 | 41.8 | 330.22 | 在吸收剂循环外 | |
乙烯精馏塔 | 2.9 | 150 | 86.3 | 569.4 | 4498.26 | 在吸收剂循环外 | |
脱丁烷塔 | 1.3 | 70 | 40.3 | 53.4 | 421.86 | 在吸收剂循环外 | |
小计 | 4960.6 | 39188.74 |
分离流程 | 塔 | 直径/m | 实际塔板数 | 高度/m | 体积/m3 | 质量/t | 备注 |
---|---|---|---|---|---|---|---|
Lummus | 脱甲烷塔 | 1.3/2.3 | 100 | 57.5 | 164.0 | 1295.6 | 在吸收剂循环内 |
脱乙烷塔 | 3.1 | 83 | 47.9 | 361.5 | 2855.85 | 在吸收剂循环内 | |
丙烯精馏塔1# | 5.8 | 59 | 33.9 | 894.2 | 7064.18 | 在吸收剂循环内 | |
丙烯精馏塔2# | 7.1 | 152 | 87.5 | 3463.6 | 27362.44 | 在吸收剂循环内 | |
水洗塔 | 2.2 | 55 | 31.6 | 120.2 | 949.58 | 在吸收剂循环外 | |
高压脱丙烷塔 | 2.5 | 51 | 29.3 | 143.6 | 1134.44 | 在吸收剂循环外 | |
低压脱丙烷塔 | 1.4 | 47 | 27.2 | 41.8 | 330.22 | 在吸收剂循环外 | |
乙烯精馏塔 | 2.9 | 150 | 86.3 | 569.4 | 4498.26 | 在吸收剂循环外 | |
脱丁烷塔 | 1.3 | 70 | 40.3 | 53.4 | 421.86 | 在吸收剂循环外 | |
小计 | 5811.7 | 45912.43 | |||||
New | 脱甲烷塔 | 1.4/1.9 | 100 | 57.5 | 133.4 | 1053.86 | 在吸收剂循环内 |
溶剂回收塔 | 1.9/2.6 | 50 | 28.8 | 161.5 | 1275.85 | 在吸收剂循环内 | |
脱乙烷塔 | 2.5 | 83 | 47.9 | 235.1 | 1857.29 | 在吸收剂循环外 | |
丙烯精馏塔1# | 5.4 | 59 | 33.9 | 775.1 | 6123.29 | 在吸收剂循环外 | |
丙烯精馏塔2# | 6.3 | 152 | 87.5 | 2727.1 | 21544.09 | 在吸收剂循环外 | |
水洗塔 | 2.2 | 55 | 31.6 | 120.2 | 949.58 | 在吸收剂循环外 | |
高压脱丙烷塔 | 2.5 | 51 | 29.3 | 143.6 | 1134.44 | 在吸收剂循环外 | |
低压脱丙烷塔 | 1.4 | 47 | 27.2 | 41.8 | 330.22 | 在吸收剂循环外 | |
乙烯精馏塔 | 2.9 | 150 | 86.3 | 569.4 | 4498.26 | 在吸收剂循环外 | |
脱丁烷塔 | 1.3 | 70 | 40.3 | 53.4 | 421.86 | 在吸收剂循环外 | |
小计 | 4960.6 | 39188.74 |
1 | 高春雨. 中国乙烯工业的竞争力路在何方[J]. 当代石油石化, 2018, 26(1): 1-7. |
GAOChunyu. Where is the road of China’s ethylene industry competitiveness[J]. Petroleum & Petrochemical Today, 2018, 26(1):1-7. | |
2 | 吴德荣, 何琨. MTO与MTP工艺技术和工业应用的进展[J]. 石油化工, 2015, 44(1):1-10. |
WUDerong, HEKun. Progresses in MTO and MTP process technology and industrial application[J]. Petrochemical Technology, 2015, 44(1):1-10. | |
3 | 亚化煤化工. 中国煤制烯烃年度报告2017[R]. 上海: 亚化咨询, 2018. |
ASIACHEM Coal Chemical Industry. 2017 Annual report of China coal olefin production[R]. Shanghai: ASIACHEM, 2018. | |
4 | 李立新, 倪进方, 李延生. 甲醇制烯烃分离技术进展及评述[J]. 化工进展, 2008, 27(9):1332-1335. |
LILixin, NIJinfang, LIYansheng. Progress of separation technologies for methanol to olefins[J]. Chemical Industry and Engineering Progress, 2008, 27(9): 1332-1335. | |
5 | 李网章, 吴艳春. 甲醇转化制取低碳烯烃气体的分离方法: CN 1847203A[P]. 2006-10-18. |
LIWangzhang, WUYanchun. Separation method of methanol to low carbon olefin gas: CN 1847203A[P]. 2006-10-18. | |
6 | 娄晓燕. 甲醇制低碳烯烃产品分离的模拟与优化[D]. 青岛: 青岛科技大学, 2013. |
LOU Xiaoyan. Simulation and optimization of methanol to light olefins products separation[D]. Qingdao: Qingdao University of Science & Technology, 2013. | |
7 | 唐锦文, 唐宏青. 甲醇制乙烯的流程模拟与分析[J]. 石油化工设计, 2001, 18(1): 30-33. |
TANGJinwen, TANGHongqing. Process simulation of ethylene from methanol[J]. China Petrochemical Design, 2001, 18(1): 30-33. | |
8 | HAAN SDE, KUZMAJR P D. Absorber demethanizer for methanol to olefins process: US 8399728[P]. 2013-03-19. |
9 | 樊红珍, 孙晓伟. 甲醇制烯烃工艺[M]. 北京: 化学工业出版社, 2016:135-137. |
FANHongzhen, SUNXiaowei. Methanol to olefins process[M]. Beijing: Chemical Industry Press, 2016: 135-137. | |
10 | 刘中民. 甲醇制烯烃[M]. 北京: 科学出版社, 2015: 355-381. |
LIUZhongmin. Methanol to olefins[M]. Beijing: Science Press, 2015: 355-381. | |
11 | 倪进方, 李立新. 一种含轻质气体的非深冷低碳烯烃分离方法: CN 10353286A[P]. 2009-01-28. |
NIJinfang, LILixin. An olefin separation method of non-cryogenic and low-carbon containing light gas: CN 10353286A[P]. 2009-01-28. | |
12 | 王雷, 陈俊武, 刘昱, 等. 一种低碳烯烃气体的分离方法: CN 103242123A[P]. 2013-08-14. |
WANGLei, CHENJunwu, LIUYi, et al. A separation method of low-carbon olefin gas: CN 103242123A[P]. 2013-08-14. | |
13 | 张世杰, 吴秀章, 刘勇, 等. 甲醇制烯烃工艺及工业化最新进展[J]. 现代化工, 2017, 37(8):1-6. |
ZHANGShijie, WUXiuzhang, LIUYong, et al. Latest progress of methanol to olefin process and industrialization[J]. Modern Chemical Industry, 2017, 37(8): 1-6. | |
14 | 柳杨华. MTO装置烯烃分离工艺优化[J]. 石油化工, 2016, 45(1): 102-107. |
LIUYanghua. Optimization of olefin separation process in MTO installation[J]. Petrochemical Technology, 2016, 45(1): 102-107. | |
15 | 展宝瑞. 甲醇制烯烃产品分离的模拟与优化[D]. 上海: 华东理工大学, 2015.ZHAN Baorui. Simulation and optimization of methanol to olefins products separation[D]. Shanghai: East China University of Science and Technology, 2015. |
16 | 展宝瑞, 李涛, 马宏方, 等. 前脱丙烷预切割分离MTO粗产品工艺的模拟与优化[J]. 化工进展, 2015, 34(7): 2086-2091. |
ZHANBaorui, LITao, HongfangMA, et al. Simulation and optimization of MTO product separation process based on front-end depropanization and pre-segmentation[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 2086-2091. | |
17 | 张晶, 马啸, 马钊, 等. 两种前脱乙烷MTO分离流程的模拟比较[J]. 石油化工, 2017, 46(12): 1496-1499. |
ZHANGJing, XiaoMA, ZhaoMA, et al. Comparison of two kinds of front-end de-ethane MTO product separation process based on simulation[J]. Petrochemical Technology, 2017, 46(12): 1496-1499. | |
18 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业用乙烯: GB/T 7715—2014[S]. 北京: 中国标准出版社, 2014. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Ethylene for industrial use——Specification: GB/T 7716—2014[S]. Beijing: Standards Press of China, 2014. | |
19 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 聚合级丙烯: GB/T 7716—2014[S]. 北京: 中国标准出版社,2014. |
20 | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Propylene for polymerization — Specification: GB/T 7716—2014[S]. Beijing: Standards Press of China, 2014. |
21 | 高晶晶. 甲醇制烯烃分离工艺模拟与合理用能分析[D]. 上海: 华东理工大学, 2017. |
GAO Jingjing. Process simulation and anslysis of reasonable energy for methanol to olefins[D]. Shanghai: East China University of Science and Technology, 2017. | |
22 | 陈昇. MTO烯烃分离流程开发[D]. 北京: 中国寰球工程有限公司, 中国科学院过程工程研究所, 2018. |
CHEN S. Development of methanol to olefins (MTO) product gas separation process[D]. Beijing: China Huanqiu Contracting & Engineering Co. Ltd, Institute of Process Engineering, CAS, 2018. | |
23 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 乙烯装置单位产品能源消耗限额: GB 30250—2013[S]. 北京: 中国标准出版社,2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. The norm of energy consumption per unit product of ethylene plant: GB 30250—2013[S]. Beijing: Standards Press of China, 2013. | |
24 | 陈昇, 曹新波, 王勇, 等. MTO产品混合气的轻烃分离系统: CN201820168191.6[P]. 2018-09-13. |
CHNE Sheng, CAOXinbo, WANGYong, et al. Olefin separation system of MTO product gas: CN 201820168191.6[P]. 2018-09-13. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[3] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[7] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[8] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[9] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[10] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[11] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[12] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[13] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[14] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[15] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |