Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3185-3193.DOI: 10.16085/j.issn.1000-6613.2018-1959
• Materials science and technology • Previous Articles Next Articles
Ting LIANG(),Zhenzhong FAN(),Qingwang LIU,Jigang WANG,Li CAI,Yuanfeng FU,Qilei TONG
Received:
2018-09-28
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zhenzhong FAN
通讯作者:
范振忠
作者简介:
梁婷(1990—),女,博士研究生,研究方向为油田化学。E-mail:<email>lt19900201@126.com</email>。
基金资助:
CLC Number:
Ting LIANG, Zhenzhong FAN, Qingwang LIU, Jigang WANG, Li CAI, Yuanfeng FU, Qilei TONG. Research progress on the self-healing on superhydrophobic/superamphiphobic surface[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3185-3193.
梁婷, 范振忠, 刘庆旺, 王继刚, 才力, 付沅峰, 仝其雷. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(07): 3185-3193.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1959
1 | GUO Z , LIU W . Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure[J]. Plant Science, 2007, 172(6):1103-1112. |
2 | ZHENG Y , BAI H , HUANG Z , et al . Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
3 | BORMASHENKO E , BORMASHENKO Y , STEIN T , et al . Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition[J]. Journal of Colloid & Interface Science, 2007, 311(1):212-216. |
4 | YIN W , ZHENG Y L , LU H Y , et al . Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs[J]. Applied Physics Letters, 2016, 109(16):163701. |
5 | WANG N , XIONG D , DENG Y , et al . Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6260-6272. |
6 | WANG Y , ZHU Y , ZHANG C , et al . Transparent, superhydrophobic surface with varied surface-tension responsiveness in wettability based on tunable porous silica structure for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2017, 9(4):4142-4150. |
7 | VILARÓ I , YAGÜE J L , BORROS S . Superhydrophobic copper surfaces with anti-corrosion properties fabricated by solventless CVD methods[J]. ACS Applied Materials & Interfaces, 2016, 9(1):1057-1065. |
8 | LI Y , WANG X , SUN J . ChemInform abstract: layer-by-layer assembly for rapid fabrication of thick polymeric films[J]. Chemical Society Reviews, 2012, 41(18): 5998-6009. |
9 | ZHANG Y , YANG S , WANG S , et al . Engineering high-performance MoO2-based nanomaterials with supercapacity and superhydrophobicity by tuning the raw materials source[J]. Small, 2018,14(25): e1800480. |
10 | DONG S , HUANG C , YOU H , et al . Preparation of superhydrophobic surface with a novel sol-gel system[J]. Applied Surface Science, 2011, 258(2): 928-934. |
11 | LU Y , SATHASIVAM S , SONG J , et al . Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226):1132-1135. |
12 | WU G , AN J , TANG X , et al . A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings[J]. Advanced Functional Materials, 2015, 24(43): 6751-6761. |
13 | YOON H , KIM H Y, LATTHE S S , et al . A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J]. Journal of Materials Chemistry A, 2015, 3(21):11403-11410. |
14 | SARANADHI D , CHEN D , KLEINGARTNER J A , et al . Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface[J]. Science Advances, 2016, 2(10):e1600686. |
15 | TUO Y, CHEN W , ZHANG H , et al . One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil[J]. Applied Surface Science, 2018,446(15):230-235. |
16 | HAASE M F , GRIGORIEV D O , MÖHWALD H , et al . Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings[J]. Advanced Materials, 2012, 24(18):2429-2435. |
17 | WANG G , SHUAI L , WEI S , et al . Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity[J]. Scientific Reports, 2016, 6:20933. |
18 | WANG Z , TANG Y , LI B . Excellent wetting resistance and anti-fouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces[J]. Journal of Membrane Science, 2017,540(15):401-410. |
19 | XUE C H , GUO X J , MA J Z, et al . Fabrication of robust and anti-fouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization[J]. ACS Applied Materials & Interfaces, 2015, 7(15):8251-8259. |
20 | WANG B , LIANG W , GUO Z , et al . Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1):336-361. |
21 | TAO M , XUE L , LIU F , et al . An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18):2943-2948. |
22 | XUE C H , LI Y , HOU J L , et al . Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(19):10248-10253. |
23 | LI Y , LI L , SUN J . Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie, 2010, 122(35):6265-6269. |
24 | JIN H , TIAN X , IKKALA O , et al . Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. Applied Materials & Interfaces, 2013, 5(3):485-488. |
25 | KULINICH S A , HONDA M , ZHU A L , et al . The icephobic performance of alkyl-grafted aluminum surfaces[J]. Soft. Matter., 2015, 11(5):856-861. |
26 | DENG X , MAMMEN L , ZHAO Y , et al . Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules[J]. Advanced Materials, 2011, 23(26):2962-2965. |
27 | TUUKKA V , CHRIS B , PIERS A , et al . Mechanically durable superhydrophobic surfaces[J]. Advanced Materials, 2011, 23(5):673-678. |
28 | ZHAO Y , XU Z , WANG X , et al . Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28(15):6328-6335. |
29 | ZIMMERMANN J , REIFLER F A , FORTUNATO G , et al . A simple, one-step approach to durable and robust superhydrophobic textiles[J]. Advanced Functional Materials, 2010, 18(22):3662-3669. |
30 | DENG B , CAI R , YU Y , et al . Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48):5473-5477. |
31 | HUA Z , WANG H , NIU H , et al . Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18):2409-2412. |
32 | WANG X , LIU X , ZHOU F , et al . Self-healing superamphiphobicity[J]. Chemical Communications, 2011, 47(8):2324-2326. |
33 | YOUNG T . An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805(95): 65-87. |
34 | NISHINO T , MEGURO M , NAKAMAE K , et al . The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323. |
35 | XUE C H , ZHANG Z D , ZHANG J , et al . Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane[J]. Journal of Materials Chemistry A, 2014, 2(36):15001-15007. |
36 | WANG H , XUE Y , DING J , et al . Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie, 2011, 50(48):11433-11436. |
37 | WANG H , ZHOU H , GESTOS A , et al . Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10221-10226. |
38 | WANG H , ZHOU H , GESTOS A , et al . Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane[J]. Soft Matter, 2012, 9(1):277-282. |
39 | LI B , ZHANG J . Durable and self-healing superamphiphobic coatings repellent even to hot liquids[J]. Chemical Communications, 2016,52(13):2744-2747. |
40 | DIKIĈ T , MING W , BENTHEM R A T M VAN , et al . Self-replenishing surfaces[J]. Advanced Materials, 2012, 24(27):3701-3704. |
41 | DIKIĈ T , MING W , THÜNE P C , et al . Well-defined polycaprolactone precursors for low surface-energy polyurethane films[J]. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(1):218-227. |
42 | LI D , GUO Z . Stable and self-healing superhydrophobic MnO2@fabrics: applications in self-cleaning, oil/water separation and wear resistance[J]. Journal of Colloid & Interface Science, 2017, 503:124-130. |
43 | XUE C H , BAI X , JIA S T . Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine[J]. Scientific Reports, 2016, 6:27262. |
44 | CHEN K , ZHOU S , WU L . Facile fabrication of self-repairing superhydrophobic coatings[J]. Chemical Communications, 2014, 50(80):11891-11894. |
45 | CHEN K , ZHOU S , YANG S , et al . Fabrication of all-water-vased self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7):1035-1041. |
46 | WU L , CONG Y , CHEN K , et al . Synthesis of pH and UV dual-responsive microcapsules with high loading capacity and their application for self-healing hydrophobic coatings[J]. Journal of Materials Chemistry A, 2015, 3(37):19093-19099. |
47 | CHEN K , ZHOU S . Fabrication of ultraviolet-responsive microcapsules via Pickering emulsion polymerization using modified nano-silica/nano-titania as Pickering agents[J]. RSC Advances, 2015, 5(18):13850-13856. |
48 | ZHU D , LU X , LU Q . Electrically conductive PEDOT coating with self-healingsuperhydrophobicity[J]. Langmuir, 2014, 30(16):4671-4677. |
49 | LIU Q , WANG X , YU B , et al . Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica[J]. Langmuir, 2012, 28(13):5845-5849. |
50 | LIU Y , LIU Y , HU H , et al . Mechanically induced self-healing superhydrophobicity[J]. Journal of Physical Chemistry C, 2015, 119(13):7109-7114. |
51 | YIN X , WANG D , BO Y , et al . Rabbit hair regenerative superhydrophobicity[J]. RSC Advances, 2013, 4(7):3611-3614. |
52 | DENG X , MAMMEN L , BUTT H J , et al . Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335(6064):67-70. |
53 | JIN H , TIAN X , IKKALA O , et al . Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. ACS Applied Materials & Interfaces, 2013, 5(3):485-488. |
54 | DING C D , LIU Y , WANG M D , et al . Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys[J]. Journal of Materials Chemistry A, 2016, 4(21):8041-8052. |
55 | CHEN T , YANG N , FU J . Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes[J]. Chemical Communications, 2013, 49(58):6555-6557. |
56 | YAMANAKA S A , DUNN B , VALENTINE J S , et al . Nicotinamide adenine dinucleotide phosphate fluorescence and absorption monitoring of enzymic activity in silicate sol-gels for chemical sensing applications[J]. Journal of the American Chemical Society, 1995, 117(35):9095-9096. |
57 | KOO H Y, LEE H J, KIM J K, et al . UV-triggered encapsulation and release from polyelectrolyte microcapsules decorated with photoacid generators[J]. Journal of Materials Chemistry, 2010, 20(19):3932-3937. |
58 | LONG Y , LIU C , ZHAO B , et al . Bio-inspired controlled release through compression-relaxation cycles of microcapsules[J]. NPG Asia Materials, 2015, 7:e148. |
59 | LI J , LIANG J , LI L , et al . Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide Diels-Alder cycloaddition polymer[J]. ACS Nano, 2014, 8(12):12874-12882. |
60 | LAI J , MEI J , JIA X , et al . A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials, 2016, 28(37):8277-8282. |
61 | JEON I , CUI J , ILLEPERUMA W R K , et al . Extremely stretchable and fast self-healing hydrogels[J]. Advanced Materials, 2016, 28(23):4678-4683. |
62 | HARING M , DIAZ D D . Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation[J]. Chemical Communications, 2016, 52(89):13068-13081. |
63 | LUO F , SUN T L , NAKAJIMA T , et al . Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J]. Advanced Materials, 2015, 27(17):2722-2727. |
64 | PURETSKIY N , STOYCHEV G , SYNYTSKA A , et al . Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28(8):3679-3682. |
65 | MANNA U , LYNN D M . Restoration of superhydrophobicity in crushed polymer films by treatment with water: self-healing and recovery of damaged topographic features aided by an unlikely source[J]. Advanced Materials, 2013, 25(36):5104-5108. |
66 | LV T , CHENG Z , ZHANG E , et al . Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small, 2017, 13(4): 1503402. |
67 | LI B , ZHANG J . Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings[J]. Carbon, 2015, 93:648-658. |
[1] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[2] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[3] | XI Huimin, QIAN Kun, YU Kejing, LI Jie, ZHANG Zhongwei, XIONG Ziming, ZHANG Yaoliang. Preparation, modification and application of self-healing polyurethane elastomers based on disulfide and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 934-943. |
[4] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
[5] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
[6] | LEI Yu, TIAN Mengmeng, ZHANG Xinya, JIANG Xiang. Research progress on the self-healing property and applications of superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633. |
[7] | Yulong WANG, Guosheng HU, Jingting ZHANG, Jingjing BAI, Qinniu LYU, Zhenzhong LI. Development of self-healing poly(urethane urea) with high performances based on the synergistic effect of disulfide bonds and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 324-331. |
[8] | Yan BAO, Jingxiang CHANG. Research progress of durable superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5148-5160. |
[9] | TONG Xiaomei, HAO Qinqin, YAN Ziying, ZHENG Boxue. Preparation and application of epoxy resin self-healing microcapsules modified by silicone [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3555-3561. |
[10] | TANG Lirong, WANG Weibin, WANG Qinghua, ZHUANG Senyang, CHENG Cuixia, HUANG Biao. Esterified cellulose nanocrystals/poly(urea-urethane) self-healing materials based on aromatic disulfide bonds [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1381-1387. |
[11] | PEI Jianxin. Preparation and properties of self-healing microcapsule for asphalt crack [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2898-2904. |
[12] | GONG Guisheng, LIU Jingbo, ZHONG Yupeng, LIN Qiang, ZHANG Faai. Self-healing performance of poly(vinyl alcohol) hydrogel [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2507-2512. |
[13] | FENG Jianzhong, MING Yaoqiang, ZHANG Yufan, GUO Haobin, HUANG Kaixin, HU Jianfeng, QU Jinqing. Progress of research on encapsuled isocyanate self-healing polymeric materials [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 175-181. |
[14] | LI Haiyan,ZHANG Libing,LI Jie,WANG Jun. Research progresses in extrinsic self-healing polymer materials [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 133-139. |
[15] | ZHANG Yunfei,DENG Guohua. Self-healing polymer gels based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progree, 2012, 31(10): 2239-3344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |