Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2707-2713.DOI: 10.16085/j.issn.1000-6613.2018-1968
• Energy processes and technology • Previous Articles Next Articles
Kaili ZHANG(),Ying LIU(),Shubin WU
Received:
2018-09-30
Online:
2019-06-05
Published:
2019-06-05
Contact:
Ying LIU
通讯作者:
刘颖
作者简介:
张凯莉(1994—),女,硕士研究生,研究方向为生物质催化转化。E-mail:<email>1395702635@qq.com</email>。
基金资助:
CLC Number:
Kaili ZHANG, Ying LIU, Shubin WU. Advances in catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-bishydroxymethylfuran[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2707-2713.
张凯莉, 刘颖, 武书彬. 5-羟甲基糠醛催化氢化制备2,5-呋喃二甲醇的研究进展[J]. 化工进展, 2019, 38(06): 2707-2713.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1968
化学品 | 5-羟甲基糠醛(HMF) | 2,5-呋喃二甲醇(BHMF) |
---|---|---|
分子式 | C6H6O3 | C6H8O3 |
摩尔质量/g·mol-1 | 126.11 | 128.13 |
熔点/℃ | 28~34 | 74~77 |
沸点/℃ | 114~116 | 275 |
密度/g·cm-3 | 1.243 | 1.283 |
紫外吸收波长/nm | 284 | 219 |
化学品 | 5-羟甲基糠醛(HMF) | 2,5-呋喃二甲醇(BHMF) |
---|---|---|
分子式 | C6H6O3 | C6H8O3 |
摩尔质量/g·mol-1 | 126.11 | 128.13 |
熔点/℃ | 28~34 | 74~77 |
沸点/℃ | 114~116 | 275 |
密度/g·cm-3 | 1.243 | 1.283 |
紫外吸收波长/nm | 284 | 219 |
序号 | 氢供体 | 溶剂 | 催化剂 | 温度/℃ | 时间/h | BHMF产率/% | 文献 |
---|---|---|---|---|---|---|---|
1 | 氢气 | 甲苯 | Shvo’s | 90 | 1 | 99 | [24 ] |
2 | 氢气 | 水 | Ni/MCM-41 | 35 | 2 | 89 | [ 25] |
3 | 2-异丙醇 | 2-异丙醇 | Ru/C | 150 | 6 | 38 | [ 26] |
4 | 乙醇 | 乙醇 | Al(OH)3 | 150 | 2 | 58.8 | [ 27] |
5 | 乙醇 | 乙醇 | Ti(OH)4 | 150 | 2 | 18.7 | [ 27] |
6 | 乙醇 | 乙醇 | ZrO(OH)2 | 150 | 2 | 87.7 | [ 27] |
7 | 甲醇 | 甲醇 | MgO | 160 | 3 | 100 | [ 28] |
8 | 甲酸 | THF | Cp*Ir(TsDPEN) | 40 | 2 | 99 | [ |
9 | 甲酸 | THF | Pd/C | 120 | 4 | 94 | [ 30] |
10 | 氢气 | 水 | Au/Al2O3 | 120 | 2 | 96 | [ |
11 | 氢气 | 水 | Pd/Al2O3 | 140 | 4 | 20 | [ 31] |
12 | 氢气 | 水,正丁醇 | Ru/CeO x | 130 | 2 | 81 | [ 32] |
13 | 氢气 | 水,正丁醇 | Ru/CeO x | 130 | 6 | 32 | [32 ] |
14 | 1,4-丁二醇 | 1,4-丁二醇 | Cu/AlO x | 220 | 6 | 93 | [ 33] |
15 | 氢气 | 丁醇 | Ni-Fe/CNTs | 110 | 18 | 96.1 | [34 ] |
16 | 氢气 | 丁醇 | Ni/CNTs | 110 | 18 | 76.4 | [34 ] |
17 | 氢气 | 丁醇 | Fe/CNTs | 110 | 18 | — | [ 34] |
18 | 氢气 | 乙醇 | Cu/Zn | 120 | 3 | 95 | [35 ] |
19 | 氢气 | 水 | Ir-ReO x /SiO2 | 30 | 6 | 99 | [ 36] |
20 | 氢气 | 1,4-二氧己环 | Cu-ZnO | 100 | 2 | 99.1 | [ 37] |
21 | 氢气 | 水 | Ir/C | 50 | 3 | 95.4 | [ 38] |
22 | 氢气 | 水 | Ir/TiO2 | 50 | 3 | 69.7 | [38 ] |
序号 | 氢供体 | 溶剂 | 催化剂 | 温度/℃ | 时间/h | BHMF产率/% | 文献 |
---|---|---|---|---|---|---|---|
1 | 氢气 | 甲苯 | Shvo’s | 90 | 1 | 99 | [24 ] |
2 | 氢气 | 水 | Ni/MCM-41 | 35 | 2 | 89 | [ 25] |
3 | 2-异丙醇 | 2-异丙醇 | Ru/C | 150 | 6 | 38 | [ 26] |
4 | 乙醇 | 乙醇 | Al(OH)3 | 150 | 2 | 58.8 | [ 27] |
5 | 乙醇 | 乙醇 | Ti(OH)4 | 150 | 2 | 18.7 | [ 27] |
6 | 乙醇 | 乙醇 | ZrO(OH)2 | 150 | 2 | 87.7 | [ 27] |
7 | 甲醇 | 甲醇 | MgO | 160 | 3 | 100 | [ 28] |
8 | 甲酸 | THF | Cp*Ir(TsDPEN) | 40 | 2 | 99 | [ |
9 | 甲酸 | THF | Pd/C | 120 | 4 | 94 | [ 30] |
10 | 氢气 | 水 | Au/Al2O3 | 120 | 2 | 96 | [ |
11 | 氢气 | 水 | Pd/Al2O3 | 140 | 4 | 20 | [ 31] |
12 | 氢气 | 水,正丁醇 | Ru/CeO x | 130 | 2 | 81 | [ 32] |
13 | 氢气 | 水,正丁醇 | Ru/CeO x | 130 | 6 | 32 | [32 ] |
14 | 1,4-丁二醇 | 1,4-丁二醇 | Cu/AlO x | 220 | 6 | 93 | [ 33] |
15 | 氢气 | 丁醇 | Ni-Fe/CNTs | 110 | 18 | 96.1 | [34 ] |
16 | 氢气 | 丁醇 | Ni/CNTs | 110 | 18 | 76.4 | [34 ] |
17 | 氢气 | 丁醇 | Fe/CNTs | 110 | 18 | — | [ 34] |
18 | 氢气 | 乙醇 | Cu/Zn | 120 | 3 | 95 | [35 ] |
19 | 氢气 | 水 | Ir-ReO x /SiO2 | 30 | 6 | 99 | [ 36] |
20 | 氢气 | 1,4-二氧己环 | Cu-ZnO | 100 | 2 | 99.1 | [ 37] |
21 | 氢气 | 水 | Ir/C | 50 | 3 | 95.4 | [ 38] |
22 | 氢气 | 水 | Ir/TiO2 | 50 | 3 | 69.7 | [38 ] |
序号 | 醇 | 还原电势/kJ·mol-1 |
---|---|---|
1 | 2-丁醇 | 69.3 |
2 | 异丙醇 | 70.0 |
3 | 1-丁醇 | 79.7 |
4 | 乙醇 | 85.4 |
5 | 甲醇 | 130.1 |
序号 | 醇 | 还原电势/kJ·mol-1 |
---|---|---|
1 | 2-丁醇 | 69.3 |
2 | 异丙醇 | 70.0 |
3 | 1-丁醇 | 79.7 |
4 | 乙醇 | 85.4 |
5 | 甲醇 | 130.1 |
1 | LUCIA L A , ARGROPOULOSD S , ADAMOPOULOS L ,et al . Chemicals and energy from biomass[J]. Canadian Journal of Chemistry,2006,84(7):960-970. |
2 | KLASS D L . Biomass for renewable energy,fuels,and chemicals[M]. Amsterdam: Elsevier , 1998:1028-1037. |
3 | KONUR O . The scientometric evaluation of the research on the production of bioenergy from biomass[J]. Biomass and Bioenergy, 2012,47(6):504-515. |
4 | STAMBOULI A B . Algerian renewable energy assessment:the challenge of sustainability[J]. Energy Policy,2011,39(8):4507-4519. |
5 | HABERL H , BERINGER T , BHATTACHARYA S C ,et al . The global technical potential of bio-energy in 2050 considering sustainability constraints[J]. Current Opinion in Environmental Sustainability,2010,2(5/6):394-403. |
6 | 杨真真 . 催化转化果糖制备5-羟甲基糠醛及其衍生物2,5-呋喃二甲醛[D]. 合肥:中国科学技术大学,2013. |
YANG Z Z . Catalytic conversion of fructose to 5-hydroxymethylfurfural and its derivative 2, 5-diformylfuran[D]. Hefei: University of Science and Technology of China,2013. | |
7 | CLIMENT M J , CORMA A , IBORRA S . Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chemistry, 2014,16(2):516-547. |
8 | LESHKOV Y R T , CHHEDA J N , DUMESIC J A . Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937. |
9 | GOSWAMI S ,DEY S, JANA S . Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids[J]. Tetrahedron, 2008,64(27):6358–6363. |
10 | MAJDOUB M , LOUPY A , PETIT A ,et al . Coupling focused microwaves and solvent-free phase transfer catalysis: application to the synthesis of new furanic diethers[J]. Tetrahedron, 1996,52(2):617-628. |
11 | TILLET G , BOUTEVIN B , AMEDURI B . Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature[J]. Progress in Polymer Science,2011,36(2):191-217. |
12 | TIMKO J M , CRAM D J . Furanyl unit in host compounds[J]. Journal of the American Chemical Society,1974,96(22):7159-7160. |
13 | COTTIER L , DESCOTES G , SORO Y . Heteromacrocycles from ring-closing metathesis of unsaturated furanic ethers[J]. Synth. Commun., 2003,33(24):4285–4295. |
14 | 马继平,于维强,王敏,等 . 催化选择转化多羟基化合物制备高附加值化学品研究进展[J]. 催化学报,2013,34(3):492-507. |
15 | MA J P, YU W Q , WANG M ,et al . Research progress in the preparation of high value-added chemicals by catalytic selective conversion of polyhydroxyl compounds[J]. Journal of Catalysis,2013,34(3):492-507. |
16 | TAKAGAKI A , NISHIMURA S , EBITANI K . Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts[J]. Applied Catalysis A: General,2010,383: 149-155. |
17 | LIU Y , LI H , HE J ,et al . Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides[J]. Catalysis Communications,2017,93: 20-24. |
18 | ZHANG J , CHEN J . Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustainable Chemistry & Engineering,2017, 5(7): 5982-5993. |
19 | GYNGAZOVA M S , NEGAHDAR L , BLUMENTHAL L C ,et al . Experimental and kinetic analysis of the liquid phase hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over carbon-supported nickel catalysts[J]. Chemical Engineering Science,2017,173: 455-464. |
20 | BUNTARA T , NOEL S , PHUA P H ,et al . From 5-hydroxymethylfurfural(HMF) to polymer precursors: catalyst screening studies on the conversion of 1,2,6-hexanetriol to 1,6-hexanediol[J]. Topics in Catalysis,2012,55(7/8/9):612-619. |
21 | LI D , LIU Q Y , ZHU C H ,et al . Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Co3O4,catalyst by controlled reduction[J]. Journal of Energy Chemistry,2019,30:34-41. |
22 | GAO Z , LI C Y , FAN G L ,et al . Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran[J]. Applied Catalysis B: Environmental,2018,226:523-533. |
23 | YAO S , WANG X , JIANG Y ,et al . One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions[J]. ACS Sustainable Chemistry & Engineering,2014,2(2):173-180. |
24 | TANG X , WEI J , DING N ,et al . Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: key intermediates for sustainable chemicals,materials and fuels[J]. Renewable & Sustainable Energy Reviews,2017,77:287-296. |
25 | MAZZONI R , PASINI T , SOLINAS G ,et al . Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural[J]. Dalton Trans, 2014,43:10224-10234. |
26 | CHATTERJEE M , ISHIZAKA T , KAWANAMI H . Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium:a simple approach[J]. Green Chemistry,2014,16(11):4734-4739. |
27 | JAE J, ZHENG W , LOBO R F ,et al . Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon[J],ChemSusChem, 2013,6(7):1158-1162. |
28 | HAO W , LI W , TANG X ,et al . Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethylfuran[J]. Green Chemistry, 2016,18(4):1080-1088. |
29 | PASINI T , LOLLI A , ALBONETTI S ,et al . Methanol as a clean and efficient H-transfer reactant for carbonyl reduction:scope,limitations,and reaction mechanism[J]. Journal of Catalysis,2014,317:206-219. |
30 | THANANATTHANACHON T , RAUCHFUSS T B . Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent[J]. Angew. Chem.: Int. Ed., 2010,49(37):6616-6618. |
31 | OHYAMA J , ESAKI A , YAMAMOTO Y ,et al .Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters[J]. RSC Adv., 2013,3(4):1033-1036. |
32 | ALAMILLO R , TUCKER M , MEI C ,et al . The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts[J]. Green Chemistry,2012,14(5):1413-1419. |
33 | AELLIG C , JENNY F , SCHOLZ D , et al . Combined 1,4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfural-derivatives under continuous flow conditions[J]. Catalysis Science & Technology,2014,4(8):2326-2331. |
34 | CUI Y , WU B , MAO L ,et al . Facilely constructing robust nanohybrids comprising high dispersion of platinum-ruthenium nanoparticles on carbon nanotubes and their enhanced electrocatalytic performance[J]. Physica Status Solidi,2012,209(12):2532-2538. |
35 | BOTTARI G , KUMALAPUTRI A J , KRAWCZYK K K ,et al . Copper-zinc alloy nanopowder:a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural[J]. ChemSusChem,2015,8(8):1323. |
36 | MACK D J , GUO B , NJARDARSON J T . ChemInform abstract: synthesis of allylic and homoallylic alcohols from unsaturated cyclic ethers using a mild and selective C—O reduction approach[J]. Chemical Communications,2012,48(63):7844-7846. |
37 | ZHU Y , KONG X , ZHENG H ,et al . Efficient synthesis of 2,5- dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts[J]. Catalysis Science & Technology 2015,5(8):4208-4217. |
38 | CAO Q , LIANG W , GUAN J ,et al . Catalytic synthesis of 2,5-bis-methoxymethylfuran: a promising cetane number improver for diesel[J]. Appl. Catal. A , 2014,481:49–53. |
39 | LIU Y , MELLMER M A , ALONSO D M ,et al . Effects of water on the copper-catalyzed conversion of hydroxymethylfurfural in tetrahydrofuran[J]. ChemSusChem,2016,8(23):3983-3986. |
40 | KUZNETSOV V A , PESTOV A V , PERVOVA M G ,et al . ChemInform abstract:new synthesis of dialkyl carbonates from alkylene carbonates and titanium alkoxides[J]. Russian Journal of Organic Chemistry,2013,49(7):1078-1079. |
41 | LIU F , ZHANG X , LU C ,et al . Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis[J]. Journal of Experimental Botany,2015,66(19):5663. |
42 | WAAL J C VAN DER , KUNKELER P J , TAN K ,et al . Zeolite titanium beta:a selective catalyst for the gas-phase meerwein-ponndorf-verley,and oppenauer reactions[J]. Journal of Catalysis,1998,173(1):74-83. |
43 | CHU G , YU Z , GAO F ,et al . Cheminform abstract:One-pot formylation and dimerization of p-alkyl phenols using DCMT‐activated DMSO[J]. Synthetic Communications,2013,43(1):44-51. |
44 | LAURENCZY G , GRASEMANN M . Formic acid as hydrogen source- recent developments and future trends[J]. Energy & Environ. Science,2012,5:8171-8181. |
45 | SHEN J , WYMAN C E . Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields[J]. AIChE Journal,2011,58(1):236–246. |
46 | GIRISUTA B , JANSSEN L P B M , HEERES H J . Green chemicals:a kinetic study on the conversion of glucose to levulinic acid[J]. Chemical Engineering Research & Design,2006,84(5):339-349. |
47 | CHANG C ,MA X J, CEN P L . Kinetics of levulinic acid formation from glucose decomposition at high temperature[J]. Chinese Journal of Chemical Engineering,2006,14(5):708-712. |
48 | LIU F , ZHANG X , LU C ,et al . Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis[J]. Journal of Experimental Botany,2015,66(19):5663. |
49 | THANANATTHANACHON T , RAUCHFUSS T B . Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation[J]. ChemSusChem, 2010,3(10):1139. |
50 | KUMALAPUTRI A J , BOTTARI G , ERNE P M ,et al . Tunable and selectiveconversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copperdopedporous metal oxides[J]. ChemSusChem, 2014,7(8):2266-2275. |
51 | CAI H , LI C , WANG A ,et al . Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions[J]. Catal. Today, 2014,234(1):59-65. |
52 | LIU F , AUDEMAR M , OLIVEIRA VIGIER K DE ,et al . Combination of Pd/C and amberlys-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione[J]. Green Chemistry,2014,16(9):4110-4114. |
53 | ALAMILLO R , TUCKER M , CHIA M ,et al . The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts[J]. Green Chemistry,2012,14(5):1413-1419. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |