Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2550-2558.DOI: 10.16085/j.issn.1000-6613.2018-1802
• Chemical processes and equipment • Previous Articles Next Articles
Rui YANG(),Yu ZHUANG,Linlin LIU,Lei ZHANG,Jian DU()
Received:
2018-09-07
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jian DU
通讯作者:
都健
作者简介:
杨蕊(1994—),女,硕士研究生,研究方向为过程系统工程。E-mail:<email>876783789@qq.com</email>。
基金资助:
CLC Number:
Rui YANG, Yu ZHUANG, Linlin LIU, Lei ZHANG, Jian DU. Research progress on work and heat exchange network synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2550-2558.
杨蕊, 庄钰, 刘琳琳, 张磊, 都健. 功热交换网络综合的研究进展[J]. 化工进展, 2019, 38(06): 2550-2558.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1802
压缩机或膨胀机与低温HEN的耦合 | 压缩机或膨胀机与高温HEN的耦合 |
---|---|
只有一条流股膨胀/压缩,只使用一种温位的冷公用工程 | 只有一条流股膨胀/压缩,只使用一种温位的热公用工程 |
膨胀机/压缩机的多变效率η是一个常数 | 膨胀机/压缩机的多变效率η是一个常数 |
流股为理想气体,绝热指数恒定( | 流股为理想气体,绝热指数恒定( |
热公用工程?可忽略 | 冷公用工程?可忽略 |
压缩机或膨胀机与低温HEN的耦合 | 压缩机或膨胀机与高温HEN的耦合 |
---|---|
只有一条流股膨胀/压缩,只使用一种温位的冷公用工程 | 只有一条流股膨胀/压缩,只使用一种温位的热公用工程 |
膨胀机/压缩机的多变效率η是一个常数 | 膨胀机/压缩机的多变效率η是一个常数 |
流股为理想气体,绝热指数恒定( | 流股为理想气体,绝热指数恒定( |
热公用工程?可忽略 | 冷公用工程?可忽略 |
1 | KANG L , LIU Y , JIANG N . Synthesis of large-scale heat exchanger networks using a T-Q diagram method[J]. Canadian Journal of Chemical Engineering, 2016, 94(10): 1955-1964. |
2 | YEE T F, GROSSMANN I E , KRAVANJA Z . Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164. |
3 | YEE T F, GROSSMANN I E . Simultaneous optimization models for heat integration—Ⅱ. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
4 | ISAFIADE A , BOGATAJ M , FRASER D , et al . Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities[J]. Chemical Engineering Science, 2015, 127:175-188. |
5 | PENG F , CUI G . Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 78: 136-149. |
6 | KIM S Y, JONGSUWAT P , SURIYAPRAPHADILOK U , et al . Global optimization of heat exchanger networks. Part 1: Stages/substages superstructure[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5944-5957. |
7 | 俞杭生 . 基于改进超结构的换热网络优化改造[D]. 杭州: 浙江工业大学, 2017. |
YU H S . Heat exchanger networks retrofit based on modified superstructure[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
8 | PAVÃO L V , COSTA C B B , RAVAGNANI M . An enhanced stage-wise superstructure for heat exchanger networks synthesis with new options for heaters and coolers placement[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2560-2573. |
9 | HONG X D , LIAO Z W , JIANG B B , et al . New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science,2017,174: 537-559. |
10 | 肖武, 史朝霞, 姜晓滨, 等 . 考虑管壳式换热器传热强化的换热网络综合研究进展[J]. 化工进展, 2018, 37(4): 1267-1275. |
XIAO W , SHI Z X , JIANG X B , et al . Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1267-1275. | |
11 | PAN M , BULATOV I , SMITH R . Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation[J]. Applied Energy, 2016, 161: 611-626. |
12 | HUANG Y L , FAN L T . Analysis of a work exchanger network[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3528-3538. |
13 | LIU G L , ZHOU H , SHEN R J , et al . A graphical method for integrating work exchange network[J]. Applied Energy, 2014, 114(2): 588-599. |
14 | ZHUANG Y , LIU L L , ZHANG L , et al . An upgraded graphical method for the synthesis of direct work exchanger networks[J]. Industrial & Engineering Chemistry Research, 2017, 56: 14304-14315. |
15 | ZHUANG Y , LIU L L , ZHANG L , et al . Direct work exchanger network synthesis of isothermal process based on improved transshipment model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 295-304. |
16 | 庄钰, 刘琳琳, 李继龙, 等 . 基于转运模型的功交换网络综合[J].化工进展, 2015, 34(4): 952-956. |
ZHUANG Y , LIU L L , LI J L , et al . Synthesis of work exchange network based on transshipment model[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 952-956. | |
17 | 周华, 刘桂莲, 冯霄 . 考虑效率的功交换网络问题表格法[J]. 化工学报, 2011, 62(6):1600-1605. |
ZHOU H , LIU G L , FENG X . Problem table method for work exchange network with efficiency considered[J]. CIESC Journal, 2011, 62(6): 1600-1605. | |
18 | 陈慧, 冯霄 . 考虑经济性的功量交换网络的最优匹配[J]. 清华大学学报(自然科学版), 2012, 52(3): 298-302. |
CHEN H , FENG X . Optimized work exchange networks with economic consideration[J]. J. Tsinghua Univ. (Sci. & Tech.), 2012, 52(3): 298-302. | |
19 | RAZIB M S , HASAN M M F , KARIMI I A . Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37(1):262-277. |
20 | 庄钰 . 基于转运模型的功交换网络综合[D]. 大连: 大连理工大学, 2015. |
ZHUANG Y . Synthesis of work exchange network based on transshipment model[D]. Dalian: Dalian University of Technology, 2015. | |
21 | LINNHOFF B , HINDMARSH E . The pinch design method for heat exchanger networks[J].Chemical Engineering Science,1983,38(5): 745-763. |
22 | TOWNSEND D W , LINNHOFF B . Heat and power networks in process design. Part Ⅰ: Criteria for placement of heat engines and heat pumps in process networks[J]. AIChE Journal, 1983, 29(5): 742-748. |
23 | TOWNSEND D W , LINNHOFF B . Heat and power networks in process design. Part Ⅱ: Design procedure for equipment selection and process matching[J]. AIChE Journal, 1983, 29(5): 748-771. |
24 | DHOLE V R , LINNHOFF B . Overall design of low temperature processes[J]. Computers & Chemical Engineering, 1994, 18(18): S105–S111. |
25 | LINNHOFF B , DHOLE V R . Shaftwork targets for low-temperature process design[J]. Chemical Engineering Science, 1992, 47(8): 2081-2091. |
26 | PANJESHAHI M H , SAHAFZADEH M , ATAEI A , et al . Integration of a gas turbine with an ammonia process for improving energy efficiency[J]. Applied Thermal Engineering, 2013, 58(1/2): 594-604. |
27 | GLAVIC P , KRAVANJA Z , HOMSAK M . Heat integration of reactors—I. Criteria for the placement of reactors into process flowsheet[J]. Chemical Engineering Science, 1988, 43(3): 593-608. |
28 | LINNHOFF B , DUNFORD H , SMITH R . Heat integration of distillation columns into overall processes[J]. Chemical Engineering Science, 1983, 38(8): 1175-1188. |
29 | SMITH R , LINNHOFF B . The design of separators in the context of overall processes[J]. Chemical Engineering Research & Design, 1988, 66(3): 195-228. |
30 | ASPELUND A , BERSTAD D O , GUNDERSEN T . An extended pinch analysis and design procedure utilizing pressure based exergy for subambient cooling[J]. Applied Thermal Engineering, 2007, 27(16): 2633-2649. |
31 | GUNDERSEN T , BERSTAD D O , ASPELUND A . Extending pinch analysis and process integration into pressure and fluid phase considerations[J]. Chemical Engineering Transactions, 2009, 18: 33-38. |
32 | FU C , GUNDERSEN T . Recuperative vapor recompression heat pumps in cryogenic air separation processes[J]. Energy, 2013, 59: 708-718. |
33 | FU C , GUNDERSEN T . Sub-ambient heat exchanger network design including expanders[J]. Chemical Engineering Science, 2015, 138: 712-729. |
34 | FU C , GUNDERSEN T . Sub-ambient heat exchanger network design including compressors[J]. Chemical Engineering Science, 2015, 137: 631-645. |
35 | FU C , GUNDERSEN T . Integrating expanders into heat exchanger networks above ambient temperature[J]. AIChE Journal, 2015, 61(10): 3404-3422. |
36 | FU C , GUNDERSEN T . Integrating compressors into heat exchanger networks above ambient temperature[J]. AIChE Journal, 2015, 61(11): 3770-3785. |
37 | FU C , GUNDERSEN T . Correct integration of compressors and expanders in above ambient heat exchanger networks[J]. Energy, 2016, 116: 1282-1293. |
38 | FU C , GUNDERSEN T . Appropriate placement of compressors and expanders in sub-ambient processes[C]// KRAVANJA Z, BOGATAJ M. Computer Aided Chemical Engineering, 2016, 38: 1767-1772. |
39 | KANSHA Y , TSURU N , SATO K , et al . Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
40 | FU C , GUNDERSEN T . Exergy analysis and heat integration of a coal-based oxy-combustion power plant[J]. Energy & Fuels, 2013, 27(11): 7138-7149. |
41 | FU C , ANANTHARAMAN R , GUNDERSEN T . Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants[J]. Energy, 2015, 84: 612- 622. |
42 | LIAO Z W , TU G N , HUANG Z L , et al . Optimal process design for recovering effluent gas at subambient temperature[J]. Journal of Cleaner Production, 2017, 144: 130-141. |
43 | LIAO Z W , HU Y X , TU G N , et al . Optimal design of hybrid cryogenic flash and membrane system[J]. Chemical Engineering Science, 2018, 179: 13-31. |
44 | LINNHOFF B , VREDEVELD D R . Pinch technology has come of age[J]. Chemical Engineering Progress, 1984, 80(7):33-40. |
45 | WECHSUNG A , ASPELUND A , GUNDERSEN T , et al . Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8): 2090- 2108. |
46 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . Simultaneous synthesis of heat exchanger networks with pressure recovery: optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3): 893-908. |
47 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . MINLP model for the synthesis of heat exchanger networks with handling pressure of process streams[J] Computer Aided Chemical Engineering, 2014, 33: 163-168. |
48 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . Simultaneous synthesis of work exchange networks with heat integration[J]. Chemical Engineering Science, 2014, 112(12): 87-107. |
49 | ONISHI V C , RAVAGNANI M A S S , CABALLERO J A . Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions[J]. Energy Conversion & Management, 2015, 94: 377-393. |
50 | HUANG K F , KARIMI I A . Work-heat exchanger network synthesis(WHENS)[J]. Energy, 2016, 113: 1006-1017. |
51 | ZHUANG Y , LIU L L , LIU Q L , et al . Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1052-1060. |
52 | FU C , GUNDERSEN T . Heat and work integration: fundamental insights and applications to carbon dioxide capture processes[J]. Energy Conversion & Management, 2016, 121: 36-48. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[4] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[5] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[6] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[7] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[8] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[9] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[10] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[11] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[12] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[13] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[14] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[15] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |