Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2559-2573.DOI: 10.16085/j.issn.1000-6613.2018-2045
• Chemical processes and equipment • Previous Articles Next Articles
Fang LIU1,2(),Long XU1,2(),Xiaoxun MA1,2
Received:
2018-10-15
Online:
2019-06-05
Published:
2019-06-05
Contact:
Long XU
通讯作者:
徐龙
作者简介:
刘方(1994—),女,硕士研究生,研究方向为BP神经网络。E-mail:<email>fangl0806@163.com</email>。
基金资助:
CLC Number:
Fang LIU, Long XU, Xiaoxun MA. Development of BP neural network and its application in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2559-2573.
刘方, 徐龙, 马晓迅. BP神经网络的发展及其在化学化工中的应用[J]. 化工进展, 2019, 38(06): 2559-2573.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2045
1 | 邹蕾, 张先锋 . 人工智能及其发展应用[J]. 信息网络安全, 2012 (2): 11-13. |
ZOU Lei , ZHANG Xianfeng . Development and application of artificial intelligence[J]. Netinfor Security, 2012(2): 11-13. | |
2 | 吕伟, 钟臻怡, 张伟 . 人工智能技术综述[J]. 上海电气技术, 2018, 11(1): 62-64. |
LÜ Wei, ZHONG Zhenyi , ZHANG Wei . Review of artificial intelligence technology[J]. Journal of Shanghai Electric Technology, 2018, 11(1): 62-64. | |
3 | TURING A M . Computing machinery and intelligence[J]. Mind, 1950, 59(236): 433-460. |
4 | 顾险峰 . 人工智能的历史回顾和发展现状[J]. 自然杂志, 2016, 38(3): 157-166. |
GU Xianfeng . Historical review and development of artificial intelligence[J]. Chinese Journal of Nature, 2016, 38(3): 157-166. | |
5 | HEBB D O . The organization of behavior[M]. New York: John Wiley & Sons Inc., 1949: 18-37. |
6 | TUMELLHAR D E , MCCLELLAND J L . Parallel distributed processing[M]. Cambridge, MA: MIT Press, 1987: 235-283. |
7 | ECCLES J C , FATT P , KOKETSU K . Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones[J]. The Journal of Physiology, 1954, 3(126): 524-562. |
8 | ROSENBLATT F . The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 6(65): 386-408. |
9 | GROSSBERG S . On the serial learning of lists[J]. Mathematical Biosciences, 1969, 4(1/2): 201-253. |
10 | GROSSBERG S . Some networks that can learn, remember, and reproduce any number of complicated space-time[J]. Indiana University Mathematics Journal, 1970, 19(1): 135-166. |
11 | MINSKY M , PAPERT S . Perceptions[M]. Oxford: MIT Press, 1969: 57-89. |
12 | HOLLAND J H . Genetic algorithms and the optimal allocation of trials[J]. Journal on Computing, 1973, 2(2): 88-105. |
13 | HOLLAND J H . Adaptation in natural and artificial systems[M]. Ann Arbor: The University of Michigan Press, 1975: 118-147. |
14 | WERBOS P . Beyond regression: new tools for prediction and analysis in the behavioral sciences[D]. Boston: Harvard University, 1974: 89-135. |
15 | GROSSBERG S . Adaptive pattern classification and universal recoding: part I: parallel development and coding of neural feature detectors[J]. Biological Cybernetics, 1976, 23(3): 121-134. |
16 | FUKUSHIMA K . Neocognitron: a self-organizing multilayered neural network[J]. Biological Cybernetics, 1980, 37(4): 193-202. |
17 | HOPFIELD J J . Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Science, 1982, 79(8): 2254-2558. |
18 | KIRKPATRICK S , GELLAT C D , VEECHI M P . Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-681. |
19 | ACKLEY D H , HINTON G E , SEJNOWSKI T J . A learning algorithm for Boltzmann machines[J]. Cognitive Science, 1985, 9(1): 147-169. |
20 | HINTON G E , SEJNOWSKI T J . Learning and relearning in Boltzmann machines[M]. Cambridge, MA: MIT Press, 1986: 282-317. |
21 | WERBOS P J . Backpropagation through time: what it does and how to do it[J]. Proceedings of the IEEE, 1990, 78(10): 1550-1560. |
22 | BROOMHEAD D S , LOWE D . Multivariable functional interpolation and adaptive networks[J]. Complex Systems, 1988, 2(3): 321-355. |
23 | LI T Y , YORKE J A . Period three implies chaos[J]. America Mathematics Monthly, 1975, 82(10): 985-992. |
24 | ZHANG Q , BENVENISTE A .Wavelet networks[J].IEEE Transactions on Neural Networks,1992,3(6):889-898. |
25 | 韩力群 . 人工神经网络理论、设计及应用[M]. 北京:化学工业出版社, 2007: 1-4. |
HAN Liqun . Artificial neural network theory, design and application[M]. Beijing: Chemical Industry Press, 2007: 1-4. | |
26 | 谢良才 . 基于BP神经网络的煤热解特性及煤灰熔融特性研究[D]. 西安: 西北大学, 2018. |
XIE Liangcai . Study on pyrolysis and ash fusion characteristics of coal based on BP neural network[D]. Xi’an: Northwestern University, 2018. | |
27 | RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. |
28 | LEONARD J , KRAMER M A .Improvement of the backpropagation algorithm for training neural networks[J].Computers&Chemical Engineering,1990,14(3):337-341 |
29 | FORESEE F D , HAGAN M T .Gauss-newton approximation to bayesian learning [C]//International Conference on Neural Networks.1997. |
30 | EBERHART R , KENNEDY J . A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Service Center, 1995: 39-43. |
31 | 胥良, 白晓磊 . 模拟退火BP神经网络在矿用通风机故障诊断中的应用[J].黑龙江科技大学学报, 2018, 28(5): 582-586. |
XU Liang , BAI Xiaolei . Application of simulated annealing BP neural network in fault diagnosis of mine ventilato[J]. Journal of Heilongjiang University of Science and Technology, 2018, 28(5): 582-586. | |
32 | SHAO D , NONG X , TAN X ,et al . Daily water quality forecast of the south-to-north water diversion project of China based on the cuckoo search-back propagation neural network[J]. Water, 2018, 10(10): 1471-1499. |
33 | CHEN S , FANG G , HUANG X , et al . Water quality prediction model of a water diversion project based on the improved artificial bee colony–backpropagation neural network[J]. Water, 2018, 10(6): 806-825. |
34 | WANG Deyun , LUO Hongyuan , Grunder OLIVIER , et al . Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm[J]. Applied Energy, 2017, 190: 390-407. |
35 | YANG Li , ZHAO Ji , SHIJUN Ji . Thermal positioning error modeling of machine tools using a bat algorithm-based back propagation neural network[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 2575-2586. |
36 | MIRJALILI S , MIRJALILI S M , LEWIS A . Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
37 | ZHUO L , ZHANG J , DONG P , et al . An SA-GA-BP neural network-based color correction algorithm for TCM tongue images[J]. Neurocomputing, 2014, 134: 111-116. |
38 | 冯少荣 . 决策树算法的研究与改进[J].厦门大学学报(自然科学版), 2007(4): 496-500. |
FENG Shaorong . Research and improvement of decision tree algorithms[J]. Journal of Xiamen University (Natural Science) , 2007(4): 496-500. | |
39 | 方匡南, 吴见彬, 朱建平, 等 .随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. |
FANG Kuangnan , WU Jianbian , ZHU Jianping , et al . A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32-38. | |
40 | 尾崎 萃 . 催化剂手册[M]. 北京: 化学工业出版社, 1982: 45-87. |
WEIQI Cui . Handbook of catalyst[M]. Beijing: Chemical Industry Press, 1982: 45-87. | |
41 | 金松寿 . 有机催化[M]. 上海: 上海科技出版社, 1986: 26-73. |
JIN Songshou . Organic catalysis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986: 26-73. | |
42 | CHINMOY B , DALAI A K . Esterification of free fatty acids (FFA) of green seed canola (GSC) oil using H-Y zeolite supported 12-tungstophosphoric acid (TPA)[J]. Applied Catalysis A: General, 2014, 485: 99-107. |
43 | 吴彩霞, 方敏, 余贤旺, 等 .基于正交设计与BP神经网络优化制备纳米WC-MgO复合粉末[J]. 世界有色金属, 2017(16): 1-5. |
WU Caixia , FANG Min , YU Xianwang , et al . Optimizing preparation of nanocomposite WC-MgO powders based on orthogonal design and back-propagation BP neural network [J]. World Nonferrous Metals, 2017(16): 1-5. | |
44 | 黄凯, 陈勇 ,母志为, 等 .基于人工神经网络和遗传算法的甲烷制氢催化剂设计[J]. 化工学报, 2016, 67(8): 3481-3490. |
HUANG Kai , CHEN Yong , MU Zhiwei , et al . Catalyst design for production of hydrogen from methane based on artificial neural network and genetic algorithm[J]. CIESC Journal, 2016, 67(8): 3481-3490. | |
45 | ABBASI M , NIAEI A , SALARI D , et al . Modeling and optimization of synthesis parameters in nanostructure La1− x Ba x Ni1− y Cu y O3, catalysts used in the reforming of methane with CO2 [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 187-195. |
46 | HADI N , NIAEI A , NABAVI S R , et al . An intelligent approach to design and optimization of M-Mn/H-ZSM-5 (M: Ce, Cr, Fe, Ni) catalysts in conversion of methanol to propylene[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59: 173-185. |
47 | SUNPHORKA S , CHALERMSINSUWAN B , PIUMSOMBOON P . Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents[J]. Fuel, 2017, 193: 142-158. |
48 | XING J , LUO K , PITSCH H , et al . Predicting kinetic parameters for coal devolatilization by means of artificial neural networks[J]. Proceedings of the Combustion Institute, 2018, 37(3): 2943-2950. |
49 | MURAVYEV N V , PIVKINA A N . New concept of thermokinetic analysis with artificial neural networks[J]. Thermochimica Acta, 2016, 637: 69-73. |
50 | FATTAHI M , KAZEMEINI M , KHORASHEH F , et al . Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium–graphene catalyst: application of the DOE and ANN methodologies[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(4): 2236-2247. |
51 | SUN Y , YANG G , ZHANG L , et al . Fischer-Trospch synthesis using iron-based catalyst in a microchannel reactor: hybrid lump kinetic with ANNs/RSM[J]. Chemical Engineering & Processing, 2017, 122: 181-189. |
52 | 高保娇, 薛永强 . 对应状态原理及其应用[J]. 中北大学学报(自然科学版), 1997(4): 369-373. |
GAO Baojiao , XUE Yongqiang . Corresponding state principle and its application[J]. Journal of North China Institute of Technology (Natural Science Edition), 1997(4): 369-373. | |
53 | 高保娇, 薛永强 . 基团贡献法估算物性的进展[J]. 山西化工, 1997(3): 21-25. |
GAO Baojiao , XUE Yongqiang . Development of estimating physical properties by group contribution method[J]. Shanxi Chemical Industry, 1997 (3): 21-25. | |
54 | 潘勇, 蒋军成, 曹洪印, 等 .基于神经网络的定量结构-性质相关性研究预测有机物燃烧特性[J]. 化工进展, 2008, 27(3): 378-384. |
PAN Yong , JIANG Juncheng , CAO Hongyin ,et al . Prediction of flammability characteristics by using quantitative structure-property relationship study based on neural network[J]. Chemical Industry and Engineering Progress, 2008, 27(3): 378-384. | |
55 | GUO Z , LIM K H, CHEN M , et al . Predicting cetane numbers of hydrocarbons and oxygenates from highly accessible descriptors by using artificial neural networks[J]. Fuel, 2017, 207: 344-351. |
56 | KESSLER T , SACIA E R , BELL A T , et al . Artificial neural network based predictions of cetane number for furanic biofuel additives[J]. Fuel, 2017, 206: 171-179. |
57 | ROCABRUNOVALDÉS C I , RAMÍREZVERDUZCO L F , HERNÁNDEZ J A . Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel[J]. Fuel, 2015, 147: 9-17. |
58 | ASANTE-OKYERE S , QIANG X , MENSAH R A , et al . Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA)[J]. Thermochimica Acta, 2018, 667: 79-92. |
59 | PADUSZYŃSKI K . Extensive evaluation of the conductor-like screening model for real solvents method in predicting liquid–liquid equilibria in ternary systems of ionic liquids with molecular compounds[J]. The Journal of Physical Chemistry B, 2018, 122(14): 4016-4028. |
60 | 谭均权,涂永善,刘子媛 .人工神经网络法预测轻质油品的闪点[J]. 石化技术与应用, 2016, 34(1): 24-28. |
TAN Junquan , TU Yongshan , LIU Ziyuan . Prediction of flash point of light fractions by artificial neural network model[J]. Petrochemical Technology & Application, 2016, 34(1): 24-28. | |
61 | 谢良才, 李风海, 薛兆民,等 . 配煤对高熔点煤灰熔融特性影响的研究[J]. 燃料化学学报, 2016, 44(12): 1430-1439. |
XIE Liangcai , LI Fenghai , XUE Zhaomin , et al . Influence of coal blending on ash fusion characteristics for coal with high ash fusion temperature[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1430-1439. | |
62 | CHENG J , WANG X , SI T , et al . Maximum burning rate and fixed carbon burnout efficiency of power coal blends predicted with back-propagation neural network models[J]. Fuel, 2016, 172: 170-177. |
63 | LIU Hui , MI Xiwei , LI Yanfei . Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks[J]. Energy Conversion and Management, 2018, 155: 188-200. |
64 | 孟庆武, 赵宏伟, 孙润诚 . 基于BP神经网络算法的电池组故障诊断研究[J]. 自动化与仪器仪表, 2017(11): 45-47. |
MENG Qingwu , ZHAO Hongwei , SUN Runcheng . Research on battery battery fault diagnosis based on BP neural network[J]. Automation & Instrumentation, 2017(11): 45-47. | |
65 | 李为民, 徐春明, 高国生,等 .基于神经网络-遗传算法优化制氢工艺水碳比[J]. 化工进展, 2004, 23(9): 998-1000. |
LI Weimin , XU Chunming , GAO Guosheng , et al . Optimization of water/carbon ratio in hydrogen production process based on neural network-genetic algorithm[J]. Chemical Industry and Engineering Progress, 2004, 23(9): 998-1000. | |
66 | PATIL-SHINDE V , KULKARNI T , KULKARNI R , et al . Artificial intelligence-based modeling of high ash coal gasification in a pilot plant scale fluidized bed gasifier[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18678-18689. |
67 | AZARPOUR A , BORHANI T N G , ALWI S R W , et al . A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors[J]. Chemical Engineering Research & Design, 2017, 117: 149-167. |
68 | AZZAM M , ARAMOUNI N A K , AHMAD M N ,et al . Dynamic optimization of dry reformer under catalyst sintering using neural networks[J]. Energy Conversion and Management, 2018, 157: 146-156. |
69 | ARAMOUNI N A K , ZEAITER J , KWAPINSKI W , et al . Thermodynamic analysis of methane dry reforming: effect of the catalyst particle size on carbon formation[J]. Energy Conversion & Management, 2017, 150: 614-622. |
70 | MIKULANDRIĆ R , LONČAR D , BÖHNING D , et al . Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers[J]. Energy Conversion & Management, 2014, 87: 1210-1223. |
71 | SHARMA N , SINGH K . Model predictive control and neural network predictive control of TAME reactive distillation column[J]. Chemical Engineering & Processing Process Intensification, 2012, 59: 9-21. |
72 | LI S , LI Y Y . Neural network based nonlinear model predictive control for an intensified continuous reactor[J]. Chemical Engineering & Processing Process Intensification, 2015, 96: 14-27. |
73 | SENSENI A Z , MESHKANI F , FATTAHI S M S , et al . A theoretical and experimental study of glycerol steam reforming over Rh/MgAl2O4 catalysts[J]. Energy Conversion & Management, 2017, 154: 127-137. |
74 | AVINASH A , MURUGESAN A . Prediction capabilities of mathematical models in producing a renewable fuel from waste cooking oil for sustainable energy and clean environment[J]. Fuel, 2018, 216: 322-329. |
75 | ESTAHBANATI M R K , FEILIZADEH M , ILIUTA M C . Photocatalytic valorization of glycerol to hydrogen: optimization of operating parameters by artificial neural network [J]. Applied Catalysis B: Environmental, 2017, 209: 483-492. |
76 | ABDULKADIR K , ATILA C , BAHATTIN A , et al . The pyrolysis process verification of hydrogen rich gas (HerG) production by artificial neural network (ANN)[J]. International Journal of Hydrogen Energy, 2016, 41(8): 4750-4758. |
77 | HOSSAIN M A , AYODELE B V , CHENG C K , et al . Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11119-11130. |
78 | 付柯, 谢良才, 闫雨瑗,等 . 改进BP神经网络预测Ni/Al2O3催化CH4-CO2重整反应[J]. 化工进展, 2017, 36(7): 2393-2399. |
FU Ke , XIE Liangcai , YAN Yuyuan , et al . Predicting model of CH4-CO2 reforming on Ni/Al2O3 catalyst by improved back propagation (BP) neural network[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2393-2399. | |
79 | HAJJAR Z , KHODADADI A , MORTAZAVI Y , et al . Artificial intelligence modeling of DME conversion to gasoline and light olefins over modified nano ZSM-5 catalysts[J]. Fuel, 2016, 179: 79-86. |
80 | MOHAMMED M L , MBELECK R , Patel D , et al . Greener and efficient epoxidation of 4-vinyl-1-cyclohexene with polystyrene 2-(aminomethyl) pyridine supported Mo(VI) catalyst in batch and continuous reactors[J]. Chemical Engineering Research & Design, 2015, 94: 194-203. |
81 | ZHU X , LIU S , CAI Y , et al . Post-plasma catalytic removal of methanol over Mn–Ce catalysts in an atmospheric dielectric barrier discharge[J]. Applied Catalysis B: Environmental, 2016, 183: 124-132. |
82 | SENER A N ,GME, EBAA L , et al . Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis[J]. Catalysis Today, 2018, 299: 289-302. |
83 | RACCUGLIA P , ELBERT K C , ADLER P D , et al . Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533: 73-77. |
84 | GILMER J , SCHOENHOLZ S S , RILEY P F , et al . Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, PMLR 70, Sydney, Australia, 2017: 6-11. |
85 | NOSENGO N .Can artificial intelligence create the next wonder material?[J]. Nature, 2016, 533(7601): 22-25. |
86 | SEGLER M H S , PREUSS M , WALLER M P . Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604. |
[1] | LI Chuankun,WANG Chunli,GAO Xinjiang. R&D and application of caprolactam plant safety operation guidance system [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 1060-1066. |
[2] | DU Yujing1,2,FAN Yingfang1. QSAR study of triphenylacrylonitrile derivatives using artificial neural network [J]. Chemical Industry and Engineering Progree, 2010, 29(1): 25-. |
[3] | YIN Fanghua,LI Weimin,YAO Chao. Optimization for biodiesel production technology based on genetic algorithm-neural network [J]. Chemical Industry and Engineering Progree, 2008, 27(8): 1293-. |
[4] |
LIU Jianxin on neural network [J]. Chemical Industry and Engineering Progree, 2006, 25(6): 708-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |