Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2285-2293.DOI: 10.16085/j.issn.1000-6613.2018-1299
• Materials science and technology • Previous Articles Next Articles
Lintao CHEN1,2,5,6(),Yugo OSAKA3,Xuecheng LIU1,4,5,6,Zhaohong HE1,5,6,Xing LI1,5,6,Hongyu HUANG1,5,6(
)
Received:
2018-06-22
Revised:
2018-12-13
Online:
2019-05-05
Published:
2019-05-05
Contact:
Hongyu HUANG
陈林涛1,2,5,6(),大坂侑吾3,刘学成1,4,5,6,何兆红1,5,6,李兴1,5,6,黄宏宇1,5,6(
)
通讯作者:
黄宏宇
作者简介:
<named-content content-type="corresp-name">陈林涛</named-content>(1994—),男,硕士研究生,研究方向为干式脱硫技术。E-mail:<email>chenlt@ms.giec.ac.cn</email>。|黄宏宇,研究员,博士生导师,研究方向为节能与环保。E-mail:<email>huanghy@ms.giec.ac.cn</email>。
基金资助:
CLC Number:
Lintao CHEN, Yugo OSAKA, Xuecheng LIU, Zhaohong HE, Xing LI, Hongyu HUANG. Preparation of MnO2/NaY composite and its performance inremoving SO2[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2285-2293.
陈林涛, 大坂侑吾, 刘学成, 何兆红, 李兴, 黄宏宇. MnO2/NaY复合材料的制备及其对SO2脱除性能[J]. 化工进展, 2019, 38(05): 2285-2293.
控制变量 | 数值 |
---|---|
恒温室的温度/K | 308.15 |
样品的反应温度/K | 473.15~773.15 |
储气罐压力/Pa | 37~41 |
样品质量/g | 0.07~0.11 |
样品颗粒大小/目 | ≤100 |
控制变量 | 数值 |
---|---|
恒温室的温度/K | 308.15 |
样品的反应温度/K | 473.15~773.15 |
储气罐压力/Pa | 37~41 |
样品质量/g | 0.07~0.11 |
样品颗粒大小/目 | ≤100 |
样品 | BET比表面积 /m2?g-1 | 孔容/mL?g-1 | 平均孔径/nm |
---|---|---|---|
纯MnO2 | 91.75 | 0.5768 | 2.5148 |
NaY分子筛 | 897.72 | 0.4459 | 1.9866 |
MnO2/NaY-20% | 690.18 | 0.4511 | 2.6146 |
MnO2/NaY-32% | 569.64 | 0.6048 | 4.2472 |
MnO2/NaY-41% | 499.70 | 0.9660 | 7.7326 |
MnO2/NaY-53% | 389.68 | 0.7166 | 7.3555 |
样品 | BET比表面积 /m2?g-1 | 孔容/mL?g-1 | 平均孔径/nm |
---|---|---|---|
纯MnO2 | 91.75 | 0.5768 | 2.5148 |
NaY分子筛 | 897.72 | 0.4459 | 1.9866 |
MnO2/NaY-20% | 690.18 | 0.4511 | 2.6146 |
MnO2/NaY-32% | 569.64 | 0.6048 | 4.2472 |
MnO2/NaY-41% | 499.70 | 0.9660 | 7.7326 |
MnO2/NaY-53% | 389.68 | 0.7166 | 7.3555 |
样品 | 第1h平均脱硫 速率( /mg | 脱硫容量 (吸附平衡) /mg | MnO2 转化率/% |
---|---|---|---|
纯MnO2 | 73.37 | 198.51 | 26.99 |
MnO2/NaY-20% | 72.11 | 104.63 | 71.11 |
MnO2/NaY-32% | 82.69 | 155.74 | 66.16 |
MnO2/NaY-41% | 114.56 | 206.11 | 68.33 |
MnO2/NaY-53% | 92.78 | 215.74 | 55.34 |
样品 | 第1h平均脱硫 速率( /mg | 脱硫容量 (吸附平衡) /mg | MnO2 转化率/% |
---|---|---|---|
纯MnO2 | 73.37 | 198.51 | 26.99 |
MnO2/NaY-20% | 72.11 | 104.63 | 71.11 |
MnO2/NaY-32% | 82.69 | 155.74 | 66.16 |
MnO2/NaY-41% | 114.56 | 206.11 | 68.33 |
MnO2/NaY-53% | 92.78 | 215.74 | 55.34 |
温度/℃ | 第1h平均脱硫 速率( /mg | 脱硫容量 (吸附平衡) /mg | MnO2转化率/% |
---|---|---|---|
200 | 23.87 | 33.92 | 11.25 |
300 | 31.82 | 45.62 | 15.13 |
400 | 114.56 | 206.11 | 68.34 |
500 | 58.27 | 132.38 | 43.89 |
温度/℃ | 第1h平均脱硫 速率( /mg | 脱硫容量 (吸附平衡) /mg | MnO2转化率/% |
---|---|---|---|
200 | 23.87 | 33.92 | 11.25 |
300 | 31.82 | 45.62 | 15.13 |
400 | 114.56 | 206.11 | 68.34 |
500 | 58.27 | 132.38 | 43.89 |
材料 | 比表面积/m2?g-1 | 脱硫容量/mg | 反应条件 | 最佳反应温度/℃ | |
---|---|---|---|---|---|
SO2浓度/μL?L-1 | 平衡气 | ||||
CaO[ | 10 | 36 | 250 | 空气 | 325 |
Ca(OH)2 [ | 16.4 | 32 | 250 | 空气 | 325 |
MgO[ | 143 | 20 | 250 | 空气 | 325 |
ZrO2 [ | 95.7 | 16 | 250 | 空气 | 325 |
TiO2 [ | 120 | 36 | 常压 纯SO2 | 无 | 室温 |
CuO-CeO2 [31] | 165 | 27 | 3600 | 氮气 | 500 |
CuO/AC[32] | 844 | 44 | 200 | 氮气 | 250 |
CuO/γ-Al2O3 [33] | 166 | 115 | 1500 | 氩气 | 400 |
CuO/Y[34] | — | 160 | 3400 | 空气 | 450 |
MnO2/AC[16] | 278 | 65.6 | 500 | 氮气 | 200 |
MnO2/NaY-41%[本文] | 500 | 206 | 40Pa 纯SO2 | 无 | 400 |
材料 | 比表面积/m2?g-1 | 脱硫容量/mg | 反应条件 | 最佳反应温度/℃ | |
---|---|---|---|---|---|
SO2浓度/μL?L-1 | 平衡气 | ||||
CaO[ | 10 | 36 | 250 | 空气 | 325 |
Ca(OH)2 [ | 16.4 | 32 | 250 | 空气 | 325 |
MgO[ | 143 | 20 | 250 | 空气 | 325 |
ZrO2 [ | 95.7 | 16 | 250 | 空气 | 325 |
TiO2 [ | 120 | 36 | 常压 纯SO2 | 无 | 室温 |
CuO-CeO2 [31] | 165 | 27 | 3600 | 氮气 | 500 |
CuO/AC[32] | 844 | 44 | 200 | 氮气 | 250 |
CuO/γ-Al2O3 [33] | 166 | 115 | 1500 | 氩气 | 400 |
CuO/Y[34] | — | 160 | 3400 | 空气 | 450 |
MnO2/AC[16] | 278 | 65.6 | 500 | 氮气 | 200 |
MnO2/NaY-41%[本文] | 500 | 206 | 40Pa 纯SO2 | 无 | 400 |
1 | LI L Y , KING D L . High-capacity sulfur dioxide absorbents for diesel emissions control[J]. Ind. Eng. Chem. Res., 2005, 44(1): 168-177. |
2 | BUENO-LÓPEZ A , GARCÍA-MARTÍNEZ J , GARCÍA-GARCÍA A , et al . Regenerable CaO sorbents for SO2 retention: carbonaceous versus inorganic dispersants[J]. Fuel, 2002, 81(18): 2435-2438. |
3 | LIU X C , OSAKA Y , HUANG H Y , et al . Development of high-performance SO2 trap materials in the low-temperature region for diesel exhaust emission control[J]. Sep. Purif. Technol. , 2016, 162: 127-133. |
4 | SINHA A K , SUZUKI K , TAKAHARA M , et al . Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification[J]. Angew. Chem. , 2007, 46(16): 2949-2952. |
5 | LUO Y , LI D . Experimental study of nanometer TiO2 for use as an adsorbent for SO2 removal[J]. Dev. Chem. Eng. Mineral Process , 2002, 10(3/4): 443-457. |
6 | WANG S Q , LIU M Z , SUN L L , et al . Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal[J]. Korean J. Chem. Eng., 2017, 34(6): 1882-1888. |
7 | KYLHAMMAR L , CARLSSON P A , INGELSTEN H H , et al . Regenerable ceria-based SO x traps for sulfur removal in lean exhausts[J]. Appl. Catal. B-Environ. , 2008, 84(1): 268-276. |
8 | YAN Z , WANG J P , ZOU R Q , et al . Hydrothermal synthesis of CeO2 nanoparticles on activated carbon with enhanced desulfurization activity[J]. Energy. Fuels. , 2012, 26(9): 5879-5886. |
9 | COOPER D A . Exhaust emissions from ships at berth[J]. Atmos. Environ. , 2003, 37(27): 3817-3830. |
10 | OSAKA Y , YAMADA K , TSUJIGUCHI T , et al . Study on the optimized design of deSO x filter operating at low temperature in diesel exhaust[J]. J. Chem. Eng. Jpn. , 2014, 47(7): 555-560. |
11 | MATHIEU Y , TZANIS L , SOULARD M , et al . Adsorption of SO x by oxide materials: a review[J]. Fuel Process Technol. , 2013, 114(3): 81-100. |
12 | WAQIF M , SAUR O , LAVALLEY J C , et al . Nature and mechanism of formation of sulfate species on copper/alumina sorbent-catalysts for SO2 removal[J]. J. Phys. Chem. , 1991, 22(33): 4051-4058. |
13 | PAYLISH J H , SONDREAL E A , MANN M D , et al . Status review of mercury control options for coal-fired power plants[J]. Fuel Process Technol. , 2003, 82(2): 89-165. |
14 | LIU S H , YAN N Q , LIU Z R , et al . Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants[J]. Environ. Sci. Technol. , 2007, 41(4): 1405-1412. |
15 | HUTSON N D , ATTWOOD B C , SCHECKEL K G . XAS and XPS characterization of mercury binding on brominated activated carbon[J]. Environ. Sci. Technol. , 2007, 41(5): 1747-1752. |
16 | LIU X C , OSAKA Y , HUANG H Y , et al . Development of low-temperature desulfurization performance of a MnO2/AC composite for a combined SO2 trap for diesel exhaust[J]. RSC Adv., 2016, 6(98): 96367-96375. |
17 | RICHER M , BERNDERT H , ECKELT R , et al . Zeolite-mediated removal of NO x by NH3 from exhaust streams at low temperature[J]. Catal. Today , 1999, 54(4): 531-545. |
18 | RICHTER M , TRUNSCHKE A , BENTRUP U , et al . Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnO x /NaY composite catalysts[J]. J. Catal. , 2002, 206(1): 98-113. |
19 | SCHRIMPF G , SCHLENKRICH M , BRICKMANN J , et al . Molecular dynamics simulation of zeolite NaY. A study of structure, dynamics, and thermalization of sorbates[J]. J. Phys. Chem. , 1992, 96(18): 7404-7410. |
20 | 赵文江, 刘靖, 朱金红, 等 . 纳米NaY分子筛的合成[J]. 工业催化, 2004, 12(4): 50-53. |
ZHAO W J , LIU J , ZHU J H , et al . Synthesis of nanoparticle NaY molecular sieve[J]. Ind. Catal. , 2004, 12(4): 50-53. | |
21 | DRAGAN G . The individual adsorption of carbon dioxide and sulphur dioxide by Y zeolites[J]. Rev. Chim-Bucharest. , 2010, 61(9): 897-902. |
22 | MARCU I C , SANDULESCU I . Study of sulfur dioxide adsorption on Y zeolite[J]. J. Serb. Chem. Soc. , 2004, 69(7): 563-569. |
23 | JIA M L , BAI H F , ZHAO R G T , et al . Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation[J]. J. Rare Earths , 2008, 26(4): 528-531. |
24 | 姜健准, 刘红梅, 张明森 . Ni/ZrO2催化剂的制备及甲烷分步水蒸气重整反应性能[J]. 化工进展, 2018, 37(1): 112-118. |
JIANG J Z , LIU H M , ZHANG M S . Preparation of Ni/ZrO2 catalyst and its performance in the reaction of stepwise steam reforming of methane[J]. Chemical Industry and Engineering Progress , 2018, 37(1): 112-118. | |
25 | 侯影飞, 李力军, 蒋驰, 等 . 活性炭负载磷钨酸催化剂的制备及其催化氧化脱硫性能[J]. 化工进展, 2017, 36(11): 4072-4079. |
HOU Y F , LI L J , JIANG C , et al . Preparation and performance of phosphotungstic acid/activated carbon catalyst for catalytic oxidative desulfurization[J]. Chemical Industry and Engineering Progress , 2017, 36(11): 4072-4079. | |
26 | 智佳 . 铈改性分子筛的制备及对水蒸气吸脱附性能的研究[D]. 重庆: 重庆大学, 2015. |
ZHI J . Preparation and study on the performance of water vapor adsorption and desorption on modified molecular sieves with Ce as modifier[D]. Chongqing: Chongqing University, 2015. | |
27 | TSANG C , KIM J, MANTHIRAM A . Synthesis of manganese oxides by reduction of KMnO4 with KBH4 in aqueous solution[J]. J.Solid. State. Chem. , 1998, 137(1): 28-32. |
28 | WU Y , LU Y , SONG C , et al . A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catal. Today , 2013, 201(1): 32-39. |
29 | XIA Y , MENG L , JIANG Y , et al . Facile preparation of MnO2 functionalized baker’s yeast composites and their adsorption mechanism for Cadmium[J]. Chem. Eng. J. , 2015, 259(1): 927-935. |
30 | SMIRNOV M Y , KALINKIN A V , PASHIS A V , et al . Comparative XPS study of Al2O3 and CeO2 sulfation in reactions with SO2, SO2+O2, SO2+H2O and SO2+O2+H2O[J]. Kinet. Catal. , 2003, 44(4): 575-583. |
31 | RODAS-GRAPAÍN A , ARENAS-ALATORRE J , GÓMEZ-CORTÉS A , et al . Catalytic properties of a CuO-CeO2 sorbentcatalyst for deSO x reaction[J]. Catal. Today , 2005, 107/108(15): 168-174. |
32 | TSENG H H , WEY M Y, FU C H . Carbon materials as catalyst supports for SO2 oxidation: catalytic activity of CuO-AC[J]. Carbon, 2003, 41(1): 139-149. |
33 | XIE G , LIU Z , ZHU Z , et al . Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia[J]. Appl. Catal. B-Environ. , 2003, 45(3): 213-221. |
34 | SUB S C, NIIYAMA H . Oxidative sorption of SO2 by Cu/zeolite[J]. Sekiyu Gakkaishi. , 1988, 31(2): 147-153. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[3] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[4] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[5] | HAN Hengwen, HAN Wei, LI Mingfeng. Research progress in olefin hydration process and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3489-3500. |
[6] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[7] | WANG Baowen, LIU Tongqing, ZHANG Gang, LI Weiguang, LIN Deshun, WANG Mengjia, MA Jingjing. Reaction characteristics of CuFe2O4 modified desulfurization slag oxygen carrier with lignite [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2884-2894. |
[8] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
[9] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[10] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[11] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
[12] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[13] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[14] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[15] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1097
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 412
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |