1 |
VENNER J G . Carbon and graphite fibers. Kirk-othmer encyclopedia of chemical technology[M]. New Jersey:John Wiley ans Sons. Inc., 2000.
|
2 |
韩赞, 张学军, 田艳红, 等 . PAN基高模量碳纤维微观结构研究[J]. 航天返回与遥感, 2010, 31(5):65-71.
|
|
HAN Zan , ZHANG Xuejun , TIAN Yanhong , et al . Microstructure of PAN-based high modulus carbon fibers[J]. Space Craft Recovery & Remote Sensing, 2010, 31(5):65-71.
|
3 |
钱鑫, 张永刚, 王雪飞 . 高温石墨化对碳纤维结构的影响[J]. 高科技纤维及应用, 2016, 41(2):24-27.
|
|
QIAN Xin , ZHANG Yonggang , WANG Xuefei . Effect of high-temperature graphitization on the structure of carbon fibers[J]. Hi-Tech Fiber and Application, 2016, 41(2): 24-27
|
4 |
张永刚, 钱鑫, 王雪飞 . 低温石墨化对碳纤维性能的影响[J]. 高科技纤维及应用, 2016, 41(2):28-31.
|
|
ZHANG Yonggang , QIAN Xin , WANG Xuefei . Effect of low-temperature graphitization on the properties of carbon fibers[J]. Hi-Tech Fiber and Application, 2016, 41(2): 28-31.
|
5 |
乔伟静, 田艳红, 张学军 . 国产聚丙烯腈基高强高模碳纤维电化学氧化表面处理工艺[J]. 复合材料学报, 2018, 35(9):2449-2457.
|
|
QIAO Weijing , TIAN Yanhong , ZHANG Xuejun . Electrochemical oxidation surface treatment of domestic polyacrylonitrile-based high strength and high modulus carbon fiber[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2449-2457.
|
6 |
HUANG Y , YOUNG R J . Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres[J]. Carbon, 1995, 33(2):97-107.
|
7 |
ZHANG W , JIE L, GANG W . Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon, 2003, 41(14):2805-2812.
|
8 |
FRANK E , INGILDEEV D , BUCHMEISER M R . Structure and properties of high-performance fiberss[M]. Cambridge:Wood Head Publishing Ltd., 2017, 7-30.
|
9 |
MIKHAILOVA V A , SAVOST'YANOVA N A , BONDARENKO N V , et al . High-modulus, high-strength carbon fibre based on polyacrylonitrile[J]. Fibre Chemistry, 1992, 23(3):186-188.
|
10 |
DEURBERGUE A , OBERLIN A . TEM study of some recent high modulus PAN-based carbon fibers[J]. Carbon, 1992, 30(7):981-987.
|
11 |
GUIGON M , OBERLIN A , DESARMOT G . Microtexture and structure of some high-modulus, PAN-base carbon fibres[J]. Fibre Science and Technology, 1984, 20(3):177-198.
|
12 |
OGALE A A , LIN C , ANDERSON D P , et al . Orientation and dimensional changes in mesophase pitch-based carbon fibers[J]. Carbon, 2002, 40(8):1309-1319.
|
13 |
LOIDL D , PARIS O , RENNHOFER H , et al . Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers[J]. Carbon, 2007, 45(14):2801-2805.
|
14 |
BARNET F R , NORR M K . A three-dimensional structural model for a high modulus PAN-based carbon fibre[J]. Composites, 1976, 7(2):93-99.
|
15 |
贺福 . 碳纤维及石墨纤维[M]. 北京:化学工业出版社, 2010:277-278.
|
|
HE Fu . Carbon fiber and graphite fiber[M]. Beijing:Chemical Industry Press, 2010:277-278.
|
16 |
TUINSTRA F , KOENIG J L . Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
|
17 |
ROBINSON I M , ZAKIKHANI M , DAY R J, et al . Strain dependence of the Raman frequencies for different types of carbon fibres[J]. Journal of Materials Science Letters, 1987, 6(10):1212-1214.
|
18 |
GALIOTIS C , BATCHELDER D N . Strain dependences of the first- and second-order Raman spectra of carbon fibres[J]. Journal of Materials Science Letters, 1988, 7(5):545-547.
|
19 |
SADEZKY A , MUCKENHUBER H , GROTHE H , et al . Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742.
|
20 |
JAWHARI T , ROID A , CASADO J . Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11):1561–1565.
|
21 |
DENNISON J R , HOLTZ M , SWAIN G . Raman spectroscopy of carbon materials[J]. Spectroscopy, 1996, 11(8):38-45.
|
22 |
CUESTA A , DHAMELINCOURT P , LAUREYNS J , et al . Raman microprobe studies on carbon materials[J]. Carbon, 1994, 32(8):1523-1532.
|
23 |
韩赞, 张学军, 田艳红,等 . 石墨化温度对PAN基高模量碳纤维微观结构的影响[J]. 化工进展, 2011, 30(8):1805-1808.
|
|
HAN Zan , ZHANG Xuejun , Tian Yanhong , et al . Effect of graphitization temperature on microstructure of PAN-based high modulus graphite fibers[J]. Chemical Industry and Engineering Progress, 2011, 30(8):1805-1808.
|