Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1283-1296.DOI: 10.16085/j.issn.1000-6613.2018-1026

Previous Articles     Next Articles

Lithium ion capacitors with organic electrolyte

Chengyu YE(),Dong YAN(),Anhui LU,Wencui LI()   

  1. School of Chemical Engineering, Dalian University of Technology, Dalian 116024,Liaoning,China
  • Received:2018-05-17 Revised:2018-07-25 Online:2019-03-05 Published:2019-03-05
  • Contact: Wencui LI

有机介质体系锂离子电容器

叶成玉(),颜冬(),陆安慧,李文翠()   

  1. 大连理工大学化工学院,辽宁 大连 116024
  • 通讯作者: 李文翠
  • 作者简介:叶成玉(1995—),女,硕士研究生,研究方向为锂离子电容器。E-mail:ycy950705@mail.dlut.edu.cn颜冬(1993—),男,博士研究生,研究方向为锂离子电容器。E-mail:yandong0418@mail.dlut.edu.cn。|叶成玉(1995—),女,硕士研究生,研究方向为锂离子电容器。E-mail:ycy950705@mail.dlut.edu.cn颜冬(1993—),男,博士研究生,研究方向为锂离子电容器。E-mail:yandong0418@mail.dlut.edu.cn。|李文翠,教授,博士生导师,研究方向为炭基高性能超级电容器的制备及应用。E-mail:wencuili@dlut.edu.cn
  • 基金资助:
    国家科学自然基金(21776041)

Abstract:

The lithium ion capacitor (LIC) is a new type of electrochemical energy storage device. It can fill the performance gap between supercapacitors and lithium ion batteries. Therefore, it is the way forward for the next generation of high energy density supercapacitors. This review first introduces the energy storage mechanisms of LIC, which are divided into electrolyte consumption mechanism, lithium ion exchange mechanism and a hybrid mechanism. Then, it focuses on the research progress of lithium ion capacitor with high energy density in organic electrolyte systems and elaborates on the characteristics, optimization direction and research status of various types of cathode and anode materials. It also points out advantages and drawbacks as well as modification ways of different materials and describes the pre-lithiated technology, separators, electrolytes, and system matching, which are relevant to industrial applications and summarizes these aspects’ impacts on the improvement of the performances of LIC such as specific energy, power density, safety, stability, etc. The unique application prospects in intelligent equipment, energy recovery, transportation, are generalized according to LIC performance, which is better than those of LIBs and supercapacitors. Finally, it looks forward to the future development of electrode structure optimization and functional integration, electrolyte specialization, cost reduction of pre-lithiation, and development of detection and in-situ characterization methods.

Key words: lithium ion capacitor, electrode materials, pre-lithiation, system matching

摘要:

锂离子电容器(lithium ion capacitor,LIC)是一种新型的电化学储能器件,可以填补锂离子电池和超级电容器两者之间的性能空白,是下一代高能量密度超级电容器的前进方向。本文首先介绍了锂离子电容器的储能原理分为电解液消耗机制、锂离子交换机制以及混合机制,并围绕高能量密度的有机介质体系锂离子电容器,着重阐述了各类电容及电池型正负极材料的性质特点、优化方向及其研究现状,指出不同材料的优缺点及改性方法。同时叙述了与产业应用相关的预嵌锂技术、隔膜、电解液以及体系匹配等方面的研究现状,总结归纳了这些部件的研究对于比能量、功率、安全、稳定性等性能的提升。在产业化应用方面,针对锂离子电容器不同于锂离子电池和传统超级电容器的性能指标,总结其在智能物流、起重机电源、机器人电源及轨道交通等方面独特的应用前景。最后展望了电极材料微观结构优化及功能集成、电解液专用化,预嵌锂成本进一步压缩、以及检测及原位表征方法的开发等锂离子电容器未来的发展方向。

关键词: 锂离子电容器, 电极材料, 预嵌锂, 体系匹配

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd