Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (11): 4427-4436.DOI: 10.16085/j.issn.1000-6613.2018-0134
Previous Articles Next Articles
YU Xinlei1,2,3, MAO Yufeng1,2,3, ZHANG Xiaoxia1,2,3, LU Lingxue1,2,3, WANG Zhiwen1,2,3, CHEN Tao1,2,3
Received:
2018-01-16
Revised:
2018-03-15
Online:
2018-11-05
Published:
2018-11-05
于新磊1,2,3, 毛雨丰1,2,3, 张晓霞1,2,3, 陆凌雪1,2,3, 王智文1,2,3, 陈涛1,2,3
通讯作者:
陈涛,教授,研究方向为微生物代谢工程与合成生物学。E-mail:chentao@tju.edu.cn。
作者简介:
于新磊(1992-),女,硕士研究生。
基金资助:
CLC Number:
YU Xinlei, MAO Yufeng, ZHANG Xiaoxia, LU Lingxue, WANG Zhiwen, CHEN Tao. Recent progress in microbial production of 3-hydroxypropionic acid[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4427-4436.
于新磊, 毛雨丰, 张晓霞, 陆凌雪, 王智文, 陈涛. 生物法生产3-羟基丙酸研究进展[J]. 化工进展, 2018, 37(11): 4427-4436.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0134
[1] KUMAR V, ASHOK S, PARK S. Recent advances in biological production of 3-hydroxypropionic acid[J]. Biotechnology Advances, 2013, 31(6):945-961. [2] BOZELL J J, PETERSEN G R. ChemInform abstract:technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "top 10" revisited[J]. Green Chem., 2010, 12(4):539-554. [3] 温丽瑗,陈成刚,张战军,等. 3-羟基丙酸的绿色合成法[J]. 工业催化, 2016, 24(8):7-11. WEN L Y, CHEN C G, ZHANG Z J, et al. Progress in green approaches to synthesizing 3-hydroxypropionic acid[J]. Industrial Catalysis, 2016, 24(8):7-11. [4] VALDEHUESA K N, LIU H, NISOLA G M, et al. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical[J]. Applied Microbiology and Biotechnology, 2013, 97(8):3309-3321. [5] 张鸿达,刘成,高卫华,等. 微生物法生产3-羟基丙酸的研究进展[J]. 化工进展, 2007, 26(1):33-36. ZHANG H D, LIU C, GAO W H, et al. Progress of producing 3-HP by microbial fermentation[J]. Chemical Industry and Engineering Progress, 2007, 26(1):33-36. [6] 牛坤,秦海彬,柳志强,等. 甘油发酵生产3-羟基丙酸的代谢改造工程菌研究进展[J]. 食品与发酵工业, 2015, 41(6):234-240. NIU K, QIN H B, LIU Z Q, et al. Research progress on 3-hydroxypropionic acid production from glycerol by metabolically engineered strains[J]. Food and Fermentation Industries, 2015, 41(6):234-240. [7] LIU C S, DING Y, ZHANG R, et al. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis[J]. Metabolic Engineering, 2016, 34:104-111. [8] CHENG Z, JIANG J, WU H, et al. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli[J]. Bioresource Technology, 2016, 200:897-904. [9] KILDEGAARD K R, JENSEN N B, SCHNEIDER K, et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway[J]. Microbial Cell Factories, 2016, 15(1):53-65. [10] LIAN H, ZELDES B M, LIPSCOMB G L, et al. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus[J]. Biotechnology and Bioengineering, 2016,113(12):2652-2660. [11] WANG Y, SUN T, GAO X, et al. Biosynthesis of platform chemical 3-hydroxypropionic acid(3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803[J]. Metabolic Engineering, 2016, 34:60-70. [12] CHU H S, KIM Y S, LEE C M, et al. Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli[J]. Biotechnology and Bioengineering, 2015, 112(2):356-364. [13] ZHAO L, LIN J, WANG H, et al. Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans[J]. Bioprocess and Biosystems Engineering, 2015, 38(12):2487-2495. [14] LI Y, WANG X, GE X, et al. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism[J]. Scientific Reports, 2016, 6:26932. [15] ZHOU S, CATHERINE C, RATHNASINGH C, et al. Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans[J]. Biotechnology and Bioengineering, 2013, 110(12):3177-3187. [16] CHEN Z, HUANG J, WU Y, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic Engineering, 2017, 39:151-158. [17] KALANTARI A, CHEN T, JI B, et al. Conversion of glycerol to 3-hydroxypropanoic acid by genetically engineered Bacillus subtilis[J]. Frontiers in Microbiology, 2017, 8:638. [18] HONJO H, TSURUNO K, TATSUKE T, et al. Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2015, 120(2):199-204. [19] LUO L H, SEO J W, BAEK J O, et al. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol[J]. Applied Microbiology and Biotechnology, 2011, 89(3):697-703. [20] BORODINA I, KILDEGAARD K R, JENSEN N B, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine[J]. Metabolic Engineering, 2015, 27:57-64. [21] LEE S H, PARK S J, PARK O J, et al. Production of 3-hyroxypropionic acid from acrylic acid by newly isolated Rhodococcus erythropolis LG12[J]. J. Microbial. Biotechnol., 2009, 19(5):474-481. [22] YU S, YAO P, LI J, et al. Enzymatic synthesis of 3-hydroxypropionic acid at high productivity by using free or immobilized cells of recombinant Escherichia coli[J]. Journal of Molecular Catalysis B:Enzymatic, 2016, 129:37-42. [23] DANIEL R, BOBIK T A, GOTTSCHALK G. Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes[J]. FEMS Microbiology Reviews, 1998, 22(5):553-566. [24] RAYNAUD C, SARCABAL P, MEYNIAL-SALLES I, et al. Molecular characterization of the 1,3-propanediol(1,3-PD) operon of Clostridium butyricum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(9):5010-5015. [25] BOBIK T A, HAVEMANN G D, BUSCH R J, et al. The propanediol utilization(pdu) operon of Salmonella enterica Serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation[J]. Journal of Bacteriology, 1999, 181(19):5967-5975. [26] LEAL N A, HAVEMANN G D, BOBIK T A. PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2[J]. Archives of Microbiology, 2003, 180(5):353-361. [27] YASUDA S M, MASAHARU, HORIKAWA H T, et al. Process for producing 1,3-propanediol and/or 3-hydroxypropionic acid:US20070148749[P]. 2006-12-13. [28] HUANG Y, LI Z, SHIMIZU K, et al. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae[J]. Bioresource Technology, 2012, 103(1):351-359. [29] KO Y, ASHOK S, ZHOU S, et al. Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae[J]. Process Biochem., 2012, 47(7):1135-1143. [30] HOLO H, SIREV G R. Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus[J]. Archives of Microbiology, 1986, 145(2):173-180. [31] 辛越勇, 王洪杰, 倪俊, 等. 新型固碳途径——3-羟基丙酸循环的研究进展[J]. 微生物学通报, 2013, 40(2):304-315. XIN Y Y, WANG H J, NI J, et al. The progress of studies on a unique carbon dioxide fixation pathway:3-hydroxypropionate cycle[J]. Microbiology China, 2013, 40(2):304-315. [32] ZARZYCKI J, BRECHT V, MULLER M, et al. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50):21317-21322. [33] BERG I A, KOCKELKORN D, BUCKEL W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea[J]. Science, 2007, 318(5857):1782-1786. [34] YE Z, LI X, CHENG Y, et al. Evaluation of 3-hydroxypropionate biosynthesis in vitro by partial introduction of the 3- hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula[J]. J. Ind. Microbiol. Biotechnol., 2016, 43(9):1313-1321. [35] LIAO H H, GOKAM R R, GORT S J, et al. Production of 3-hydropropionic acid using beta-alanine/pyruvate aminotransferase:US 20070107080 A1[P]. 2007-05-10. [36] JESSEN H, RUSH B, HURYTA J, et al. Composition and methods for 3-hydroxypropionic acid production:WO9090918[P]. 2015- 07-28. [37] MIYOSHI T, HARADA T. Utilization of 2-butyne-1,4-diol by a strain of Fusarium merismoides[J]. Journal of Fermentation Technology, 1974, 52(6):388-392. [38] HASEGAWA J, OGURA M, KANEMA H, et al. Production of beta-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid[J]. Journal of Fermentation Technology, 1982, 60(6):591-594. [39] KLEMPIER N, DE RAADT A, FABER K, et al. Selective transformation of nitriles into amides and carboxylic acids by an immobilized nitrilase[J]. Tetrahedron Lett.,1991, 32(3):341-344. [40] BRAMUCCI M G, DICOSIMD R, FALLON R, et al. 3-Hydroxycarboxylic acid production and use in branched polymers:US6562603[P]. 2003-05-13. [41] ZHANG Q, GONG J S, DONG T T, et al. Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid[J]. Bioprocess and Biosystems Engineering, 2017, 40(6):901-910. [42] Cargill develops new organic acid fermentation[J]. Ind. Bioprocess, 2002, 24(12):3. [43] WALSH P, DE J E, HIGSON A, et al. Bio-based chemicals:value added products from biorefineries[J]. Iea Bioenergy, 2012:1-37. [44] FOUNDATION W A R, SUTHERS P F, CAMERON D C. Production of 3-hydroxypropionic acid in recombinant organism:EP6852517 B1[P]. 2005-02-08. [45] KUMAR V, SANKARANARAYANAN M, JAE K E, et al. Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase[J]. Applied Microbiology and Biotechnology, 2012, 96(2):373-383. [46] KILDEGAARD K R, HALLSTR M B M, BLICHER T H, et al. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance[J]. Metabolic Engineering, 2014, 26:57-66. [47] CHEN Y, BAO J, KIM I K, et al. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2014, 22:104-109. [48] CARDENAS J, DA SILVA N A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis[J]. Metabolic Engineering, 2016, 36:80-89. [49] CHEN X, YANG X, SHEN Y, et al. Increasing malonyl-CoA derived product through controlling the transcription regulators of phospholipid synthesis in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2017, 6:905-912. [50] RAJ S M, RATHNASINGH C, JO J E, et al. Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain[J]. Process Biochem., 2008, 43(12):1440-1446. [51] TSURUNO K, HONJO H, HANAI T. Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch[J]. Microbial Cell Factories, 2015, 14(1):155-168. [52] LIU C S, WANG Q, XIAN M, et al. Dissection of malonyl-coenzyme a reductase of Chloroflexus aurantiacus results in enzyme activity improvement[J]. PLoS One, 2013, 8(9):75554 [53] LIU M, DING Y M, CHEN H L, et al. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion[J]. BMC Microbiol, 2017, 17(9):10-18. [54] SONG C W, KIM J W, CHO I J, et al. Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route[J]. ACS Synthetic Biology, 2016, 5(11):1256-1263. [55] SHIH P M, ZARZYCKI J, NIYOGI K K, et al. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium[J]. J. Biol. Chem., 2014, 289(14):9493-9500. [56] LAN E I, CHUANG D S, SHEN C R, et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942[J]. Metabolic Engineering, 2015, 31:163-170. [57] ASHOK S, MOHAN R S, KO Y, et al. Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT[J]. Metabolic Engineering, 2013, 15(1):10-24. [58] HUANG Y N, LI Z M, SHIMIZU K, et al. Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions[J]. Bioresource Technology, 2013, 128:505-512. [59] MOHAN R S, RATHNASINGH C, JUNG W C, et al. Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli[J]. Applied Microbiology and Biotechnology, 2009, 84(4):649-657. [60] KELLER M W, SCHUT G J, LIPSCOMB G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15):5840-5845. [61] SABET-AZAD R, SARDARI R R R, LINARES-PAST N J A, et al. Production of 3-hydroxypropionic acid from 3- hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes[J]. Bioresource Technology, 2015, 180:214-221. [62] GOPI G R, GANESH N, PANDIARAJ S, et al. A study on enhanced expression of 3-hydroxypropionic acid pathway genes and impact on its production in Lactobacillus reuteri[J]. Food Technol. Biotechnol., 2015, 53(3):331-336. [63] RAMAKRISHNAN G G, NEHRU G, SUPPURAM P, et al. Bio-transformation of glycerol to 3-hydroxypropionic acid using resting cells of Lactobacillus reuteri[J]. Current Microbiology, 2015, 71(4):517-523. [64] SUYAMA A, HIGUCHI Y, URUSHIHARA M, et al. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains[J]. Journal of Bioscience and Bioengineering, 2017, 124(4):392-399. [65] ZHANG Y H. Production of biofuels and biochemicals by in vitro synthetic biosystems:opportunities and challenges[J]. Biotechnology Advances, 2015, 33(7):1467-1483. [66] FU J, HUO G, FENG L, et al. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production[J]. Biotechnology for Biofuels, 2016, 9:90-103. [67] JAKOCIUNAS T, JENSEN M K, KEASLING J D. CRISPR/Cas9 advances engineering of microbial cell factories[J]. Metabolic Engineering, 2016, 34:44-59. [68] HUANG J, WANG Y, ZHAO J. CRISPR editing in biological and biomedical investigation[J]. Journal of Cellular Physiology, 2018, 233(5):3875-3891. [69] KHAN M H U, KHAN S U, MUHAMMAD A, et al. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology[J]. Journal of Cellular Physiology, 2018, 233(6):4578-4594. |
[1] | TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. |
[2] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[3] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[4] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[5] | ZHOU Zikang, XU Ping. Application and progress of global transcription regulation in microbial cell factory construction [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1248-1251. |
[6] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[7] | Lu CHEN,Dingyu LIU,Baowei WANG,Yu jiao ZHAO,Guangtao JIA,Tao CHEN,Zhiwen WANG. Advances in acetyl coenzyme A metabolic engineering with Escherichia coli [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4218-4226. |
[8] | Xiaofeng ZHOU, Lianghua WU, Jiale JIANG. Research progress of acrylonitrile production from renewable biomass [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1815-1822. |
[9] | Pengcheng CHANG, Yang YU, Ying WANG, Chun LI. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 598-605. |
[10] | CHENG Shen, ZHANG Songhong, YUN Junxian. Recent advances in microbial synthesis of α-ketoisocaproate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4821-4829. |
[11] | TANG Ruiqi, XIONG Liang, CHENG Cheng, ZHAO Xinqing, BAI Fengwu. Progress of research on construction and optimization of recombinant Saccharomyces cerevisiae strains for cellulosic ethanol production [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3119-3128. |
[12] | LIU Dingyu, MENG Jiao, WANG Zhiwen, CHEN Tao, ZHAO Xueming. Progress and application on multivariate modular metabolic engineering in metabolic engineering [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3619-3626. |
[13] | SUN Meili, LIU Huhu, WU Wenjia, REN Lujing, HUANG He, JI Xiaojun. Metabolic engineering of yeast to produce polyunsaturated fatty acids [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 872-878. |
[14] | PEI Jianjun, QU Yiran, YIN Ran, CHEN Anna, ZHAO Linguo. Cloning and expression of glycerol dehydratase and 1,3-propanediol dehydrogenase from Clostridium butyricum VPI3266 [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 210-215. |
[15] | MA Qiangqiang,ZHAO Guangrong. Research progress in L-DOPA synthesis [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1367-1371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |