[1] ENGEL C A, STRAATHOF A J, ZIJLMANS T W, et al. Fumaric acid production by fermentation[J]. Applied Microbiology and Biotechnology, 2008, 78(3):379-389.
[2] SAUER M, PORRO D, MATTANOVICH D, et al. Microbial production of organic acids:expanding the markets[J]. Trends in Biotechnology, 2008, 26(2):100-108.
[3] AIKATERINI P, NIKOLAOS A, MARIA P, et al. Biotechnological production of fumaric acid:the effect of morphology of Rhizopus arrhizus NRRL 2582[J]. Fermentation, 2017, 3(3):33.
[4] ICHIKAWA S, ⅡNO T, SATO S, et al. Improvement of production rate and yield of fumaric acid from maleic acid by heat treatment of Pseudomonas alcaligenes strain XD-1[J]. Biochemical Engineering Journal, 2003, 13(1):7-13.
[5] ZHANG K, YU C, YANG S T. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae[J]. Process Biochemistry, 2015, 50(2):173-179.
[6] DING Y Y, LI S, DOU C, et al.Production of fumaric acid by Rhizopus oryzae:role of carbon-nitrogen ratio[J]. Applied Biochemistry and Biotechnology, 2011, 164(8):1461-1467.
[7] BAEYENS J, KANG Q, APPELS L, et al. Challenges and opportunities in improving the production of bio-ethanol[J]. Progress in Energy and Combustion science, 2015, 47:60-88.
[8] KNAUF M, MONIRUZZAMAN M. Lignocellulosic biomass processing:a perspective[J]. International Sugar Journal, 2004, 106(1263):147-150.
[9] WANG H T, PAN L J, LIN X J, et al. Study on the fermentation of fumaric acid by Rhizopus oryzae[J]. Research Journal of Biotechnology, 2014, 9(11):62-71.
[10] WATKINS D W, JENKINS J M, GRAYSON K J, et al. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme[J]. Nature Communicatioin, 2017, 25(1):358.
[11] LIAO W, LIU Y, FREAR C, et al. A new approach of pellet formation of a filamentous fungus Rhizopus oryzae[J]. Bioresource Technology, 2007,98(18):3415-3423.
[12] TAMAKAWA H, IKUSHIMA S, YOSHIDA S, et al. Efficient production of L-lactic acid from xylose by a recombinant Candida utilisstrain[J]. Journal of Bioscience and Bioengineering, 2012, 113(1):73-75.
[13] BAI D M, ZHAO X M, LI X G, et al. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants[J]. Biochemical Engineering Journal, 2004, 18(1):41-48.
[14] PETRUCCIOLI M, ANGIANI E, FEDERICI F, et al. Semi-continuous fumaric acid production by Rhizopus arrhizus immobilized in polyurethane sponge[J]. Process Biochemistry, 1996, 31(5):463-469.
[15] CARTA F, SOCCOL C, RAMOS L, et al. Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse[J]. Bioresource Technology, 1999, 68(1):23-28.
[16] 王月皎,夏乾竣,李迅,等. 解糖热纤维菌木糖苷酶的分离纯化及其酶学性质[J]. 化工进展,2017,36(3):1041-1046. WANG Y J, XIA Q J, LI X, et al. Purification and characterization of a thermostable β-xylosidase from Caldicellulosiruptor saccharolyticus[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1041-1046.
[17] PRONK J T, STEENSMA H, VAN-DIJKEN J P. Pyruvate metabolism in Saccharomyces cerevisiae[J]. Yeast, 1996, 12(16):1607-1633.
[18] ADEBOYE P T, BETTIGA M, OLSSON L, et al. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates[J]. Applied Microbiology and Biotechnology, 2014, 4(1):46-52.
[19] FAZELI N S, BRANDBERG T, LENNARTSSON P R, et al. Inhibitor tolerance:a comparison between Rhizopus sp. and Saccharomyces cerevisiae[J]. BioResources, 2013, 8(4):5524-5535.
[20] OSMANI S A, SCRUTTON M C. The sub-cellular localisation and regulatory properties of pyruvate carboxylase from Rhizopus arrhizus[J]. European Journal of Biochemistry, 1985,147(1):119-128.
[21] 刘维喜, 付晶, 章博, 等. 微生物木糖代谢途径改造制备生物基化学品[J]. 生物工程学报, 2013, 29(8):1161-1172. LIU W X, FU J, ZHANG B, et al. Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals[J]. Chinese Journalof Biotechnology, 2013, 29(8):1161-1172.
[22] CHEN X L, WU J, SONG W, et al. Fumaric acid production by Torulopsis glabrata:engineering the urea cycle and the purine nucleotide cycle[J]. Biotechnology and Bioengineering, 2015, 112(1):156-167.
[23] PAN X R, LIU H, WEN J P, et al. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose[J]. Bioresource Technology, 2016, 222:24-32.
[24] CASINI A, STORCH M, BALDWIN G S, et al. Bricks and blueprints:methods and standards for DNA assembly[J]. Nature Reviews Molecular Cell Biology, 2015, 16(9):568-576.
[25] CAO Y L, RYSER M D, PAYNE S, et al. Collective space-sensing coordinates pattern scaling in engineered bacteria[J]. Cell, 2016, 165(3):620-630.
[26] YAMAICHI Y, DORR T. Transposon insertion site sequencing for synthetic lethal screening[J]. Methods in Molecular Biology, 2017, 1624:39-49.
[27] HAGEMANN M, HESS W R. Systems and synthetic biology for the biotechnological application of cyanobacteria[J]. Current Opinion in Biotechnology, 2017, 49:94-99.
[28] LI S Y, ZHAO G P, WANG J. C-brick:a new standard for assembly of biological parts using Cpf1[J]. ACS Synthetic Biology, 2016, 5(12). 1383-1388.
[29] KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis:technologies and applications[J]. Nat. Methods, 2014, 11(5):499-507.
[30] XU G Q, ZOU W, CHEN X L, et al. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering[J]. PLoS One, 2012, 7(12):e52086.
[31] XU G, LIU L, CHEN J, et al. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae[J]. Microbial Cell Factory, 2012, 11(1):24-31.
[32] XU G Q, CHEN X L, LIU L M, et al. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes[J]. Bioresource Technology, 2013, 148(8):91-96.
[33] SONG C W, KIM D I, LEE S Y, et al. Metabolic engineering of Escherichia coli for the production of fumaric acid[J]. Biotechnology and Bioengineering, 2013, 110(7):2025-2034.
[34] LI N, ZHANG B, WANG Z W, et al. Engineering Escherichia coli for fumaric acid production from glycerol[J]. Bioresource Technology, 2014, 174:81-87.
[35] WEI L, QI H S, WEN J P, et al. Engineering Scheffersomyces stipitis for fumaric acid production from xylose[J]. Bioresource Technology, 2015, 187:246-254. |