[1] KITANO M,INOUE Y,YAMAZAKI Y,et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store[J]. Nature Chemistry,2012,4(11):934-940.
[2] AFIF A,RADENAHMAD N,CHEOK Q,et al. Ammonia-fed fuel cells:a comprehensive review[J]. Renewable & Sustainable Energy Reviews,2016,60:822-835.
[3] MARNELLOS G,STOUKIDES M. Ammonia synthesis at atmospheric pressure[J]. Science,1998,282(5386):98-100.
[4] SHAFAIEE S,TOPAL E. When will fossil fuel reserves be diminished?[J]. Energy Policy,2009,37(1):181-189.
[5] 蒋德军. 合成氨工艺技术的现状及其发展趋势[J]. 现代化工,2005,25(8):9-14. JIANG D J. Present situation and development of technology for ammonia synthetic process[J]. Modern Chemical Industry,2005,25(8):9-14.
[6] 颜鑫. 我国合成氨工业的回顾与展望——纪念世界合成氨工业化100周年[J]. 化肥设计,2013(5):1-6. YAN X. Retrospect and prospect of synthetic ammonia industry in China——commemorating the 100th anniversary of synthetic ammonia industry in the world[J]. Chemical Fertilizer Design,2013(5):1-6.
[7] ZHANG C,CHEN J,WEN Z. Assessment of policy alternatives and key technologies for energy conservation and water pollution reduction in China's synthetic ammonia industry[J]. Journal of Cleaner Production,2011,25:96-105.
[8] 刘化章. 合成氨工业:过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展,2013,32(9):1995-2005. LIU H Z. Ammonia synthesis industry:past,present and future——retrospect,enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress,2013,32(9):1995-2005.
[9] 刘化章. 合成氨工业节能减排的分析[J]. 化工进展,2011,30(6):1147-1157. LIU H Z. Analysis of energy saving in ammonia synthesis industry[J]. Chemical Industry and Engineering Progress,2011,30(6):1147-1157.
[10] JAFARI R,ASADOLLAHI S,FARZANEH M. Applications of plasma technology in development of superhydrophobic surfaces[J]. Plasma Chemistry and Plasma Processing,2013,33(1):177-200.
[11] TENDERO C,TIXIER C,TRISTANT P,et al. Atmospheric pressure plasmas:a review[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(1):2-30.
[12] HONKALA K,HELLMAN A,REMEDIAKIS I N,et al. Ammonia synthesis from first-principles calculations[J]. Science,2005,307(5709):555.
[13] 李和平,于达仁,孙文廷,等. 大气压放电等离子体研究进展综述[J]. 高电压技术,2016,42(12):3697-3727. LI H P,YU D R,SUN W Y,et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering,2016,42(12):3697-3727.
[14] GUO C,TANG F,CHEN J,et al. Development of dielectric-barrier-discharge ionization[J]. Analytical and Bioanalytical Chemistry,2015,407(9):2345-2364.
[15] 王新新. 介质阻挡放电及其应用[J]. 高电压技术,2009,35(1):1-11. WANG X X. Dielectric barrier discharge and its applications[J]. High Voltage Engineering,2009,35(1):1-11.
[16] 王燕,白敏冬,张芝涛,等. 强电离放电合成氨实验研究[J]. 大连海事大学学报,2002,28(2):59-62. WANG Y,BAI M D,ZHANG Z T,et al. Study on ammonia synthesis by strong electric field discharge[J]. Journal of Dalian Maritime University,2002,28(2):59-62.
[17] 詹科萍,白敏冬,高洪辉,等. 强电场放电CH4与N2合成方法的研究[J]. 高电压技术,2006,32(5):60-62. ZAHAN K P,BAI M D,GAO H H,et al. Synthesis of CH4 and N2 by the DBD discharge[J]. High Voltage Engineering,2006,32(5):60-62.
[18] BAI M D,ZHANG Z T,BAI M,et al. Synthesis of ammonia using CH4/N2,plasmas based on micro-gap discharge under environmentally friendly condition[J]. Plasma Chemistry and Plasma Processing,2008,28(4):405-414.
[19] GOMEZR AMIREZ A,COTRINO J,LAMBERT R M,et al. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor[J]. Plasma Sources Science & Technology,2015,24(6):065011.
[20] XIE D Y,SUN Y,ZHU T L,et al. Ammonia synthesis and by-product formation from H2O,H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst[J]. RSC Advances,2016,6(107):105338-105346.
[21] 李成榕,王新新. 大气压下的辉光放电[J]. 高电压技术,2002,28(b12):41-43. LI C R,WANG X X. Atmospheric pressure glow discharge[J]. High Voltage Engineering,2002,28(b12):41-43.
[22] WANG X,ZHOU M,JIN X. Application of glow discharge plasma for wastewater treatment[J]. Electrochimica Acta,2012,83(12):501-512.
[23] YIN K S,VENUGOPALAN M. Plasma chemical synthesis. I. Effect of electrode material on the synthesis of ammonia[J]. Plasma Chemistry and Plasma Processing,1983,3(3):343-350.
[24] 白敏冬,张芝涛,白希尧,等. 强电场放电常压合成NH3研究[J]. 大连海事大学学报,1999,25(1):84-87,110. BAI M D,ZHANG Z T,BAI X X,et al. Study on synthesis NH3 at normal pressure by the strong electric field discharge[J]. Journal of Dalian Maritime University,1999,25(1):84-87,110.
[25] CALZADA M D,MOISAN M,GAMERO A,et al. Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure[J]. Journal of Applied Physics,1996,80(1):46-55.
[26] NAKAJIMA J,SEKIGUCHI H. Synthesis of ammonia using microwave discharge at atmospheric pressure[J]. Thin Solid Films,2008,516(13):4446-4451.
[27] TURNER M M. Collisionless heating in radio-frequency discharges:a review[J]. Journal of Physics D:Applied Physics,2009,42(19):194008.
[28] 赵亚楠. 射频等离子体氨合成及其动力学研究[D]. 重庆:重庆大学,2013. ZHAO Y N. Ammonia synthesis under radio frequency plasma and the kinetics research[D]. Chongqing:Chongqing University,2013.
[29] HARUYAMA T,NAMISE T,SHIMOSHIMIZU N,et al. Non-catalyzed one-step synthesis of ammonia from atmospheric air and water[J]. Green Chemistry,2016,18(16):4536-4541.
[30] AIHARA K,AKIYAMA M,DEGUCHI T,et al. Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma[J]. Chemical Communications,2016,52(93):13560-13563.
[31] MIZUSHIMA T,MATSUMOTO K,OHKITA H,et al. Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing,2007,27(1):1-11.
[32] HONG J,ARAMESH M,SHIMONI O,et al. Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge[J]. Plasma Chemistry and Plasma Processing,2016,36(4):917-940.
[33] PENG P,LI Y,CHENG Y,et al. Atmospheric pressure ammonia synthesis using non-thermal plasma assisted catalysis[J]. Plasma Chemistry and Plasma Processing,2016,36(5):1201-1210.
[34] BAI M,BAI X,ZHANG Z,et al. Synthesis of ammonia in a strong electric field discharge at ambient pressure[J]. Plasma Chemistry and Plasma Processing,2000,20(4):511-520.
[35] BAI M D,ZHANG Z,BAI X,et al. Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure[J]. IEEE Transactions on Plasma Science,2004,31(6):1285-1291.
[36] KIM H,TERAMOTO Y,OGATA A,et al. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts[J]. Plasma Processes & Polymers,2016,36(5):1201-1210.
[37] ⅡTSUKA Y,YAMAUCHI H,SATO S,et al. Ammonia production from solid urea using non-thermal plasma[J]. IEEE Transactions on Industry Applications,2012,48:872-877.
[38] SAADATIOU N,JJAFARI A,SAHEBDELFAR S. Ruthenium nanocatalysts for ammonia synthesis:a review[J]. Chemical Engineering Communications,2015,202(4):420-448.
[39] MOHA V,LEITNER W,HOLSCHER M. NH3 synthesis in the N2/H2 reaction system using cooperative molecular tungsten/rhodium catalysis in ionic hydrogenation:a DFT study[J]. Chemistry,2016,22(8):2624.
[40] SEETHARAMULU P,KUMAR V S,PADMASRI A H,et al. A highly active nano-Ru catalyst supported on novel Mg-Al hydrotalcite precursor for the synthesis of ammonia[J]. Catalysis Today,2007,141(1/2):94-98.
[41] 刘化章,李小年. 合成氨催化技术与工艺进展[J]. 现代化工,2004,24(2):7-11. LIU H Z,LI X N. Advance in catalytic technology and process for ammonia synthesis[J]. Modern Chemical Industry,2004,24(2):7-11.
[42] 诸葛绍渊. 常压介质阻挡放电等离子体协同催化合成氨应用基础研究[D]. 杭州:浙江工业大学,2015. ZHUGE S Y. Ammonia synthesis using atmosphere DBD plasma coupled with catalysis[D]. Hangzhou:Zhejiang University of Technology,2015.
[43] AKAY G,ZHANG K. Process intensification in ammonia synthesis using novel co-assembled supported micro-porous catalysts promoted by non-thermal plasma[J]. Industrial & Engineering Chemistry Research,2016,56(2):457-468.
[44] PFENDER E. Thermal plasma technology:where do we stand and where are we going?[J]. Plasma Chemistry & Plasma Processing,1999,19(1):1-31.
[45] 罗跃辉,杨兰均,冯允平,等. 放电等离子体空气灭菌净化技术的研究[J]. 高电压技术,2001,27(5):39-40. LUO Y H,YANG L J,FENG Y P,et al. Study on the technology of air sterilization by discharge plasmas[J]. High Voltage Engineering,2001,27(5):39-40.
[46] 沈红梅,任荣,顾璠. 大功率介质阻挡等离子体电源特性及工业应用研究[J]. 电源技术应用,2009(7):12-16. SHEN H M,REN R,GU F. Characteristics and industrial application of high power supply used in dielectric barrier discharge[J]. Power Supply Technologies and Applications,2009(7):12-16.
[47] 林杰. 基于DSP的低温等离子体电源控制系统设计[D]. 北京:北京交通大学,2009. LIN J. The design of control system of the plasma power supply for sewage treatment based on DSP[D]. Beijing:Beijing Jiaotong University,2009.
[48] 韩银娟,周海东,马立新,等. 低温等离子体电源的设计及有机物降解研究[J]. 信息技术,2015(2):38-41. HAN Y J,ZHOU H D,MA L X,et al. Design and application of a power supply of non-thermal plasma for the degradation of organic substance[J]. Information Technology,2015(2):38-41.
[49] 朱志杰,张贵新,刘亮,等. 用于产生等离子体的高压脉冲电源的研制[J]. 高电压技术,2007,33(2):28-31. ZHU Z J,ZHANG G X,LIU L,et al. Development of a pulse generator for exciting plasma[J]. High Voltage Engineering,2007,33(2):28-31.
[50] 刘海鹏,易波. 空气中低温等离子体生成电源的研究[J]. 中国科技信息,2010(18):48-49. LIU H P,YI B. Research on air NTP power supply[J]. China Science and Technology Information,2010(18):48-49. |