Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (S1): 278-290.DOI: 10.16085/j.issn.1000-6613.2017-0196
Previous Articles Next Articles
XIN Chunling, WANG Suqing, MENG Qingguo, LIU Lili, WANG Xia, YANG Jinmei
Received:
2017-02-13
Revised:
2017-02-13
Online:
2017-12-13
Published:
2017-12-31
辛春玲, 王素青, 孟庆国, 刘丽丽, 王霞, 杨金美
通讯作者:
王素青,硕士,教授。
作者简介:
辛春玲(1987-),女,博士,讲师。E-mail:xinchunling0925@126.com
基金资助:
CLC Number:
XIN Chunling, WANG Suqing, MENG Qingguo, LIU Lili, WANG Xia, YANG Jinmei. Research progress of solid adsorbent for CO2 capture[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 278-290.
辛春玲, 王素青, 孟庆国, 刘丽丽, 王霞, 杨金美. 二氧化碳捕获固体吸附剂的研究进展[J]. 化工进展, 2017, 36(S1): 278-290.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0196
[1] Http://www.Chinatoday.Com.Cn/ctchinese/zhuanti/node_99061. Htm[J]. [2] SUMIDA K,ROGOW D L,MASON J A,et al.Carbon dioxide capture in metal-organic frameworks[J].Chem.Rev.,2012,112:724-81. [3] MARTÍN C F,PLAZA M G,PIS J J,et al.On the limits of CO2 capture capacity of carbons[J].Separation and Purification Technology,2010,74:225-229. [4] PLAZA M G,GARCIA S,RUBIERA F,et al.Post-comb-ustion CO2 capture with a commercial activated carbon:comparison of different regeneration strategies[J].Chemical Engineering Journal,2010,163:41-47. [5] KIKKINIDES E S,YANG R T,CHO S H.Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption[J].Industrial & Engineering Chemistry Research,1993,32:2714-2720. [6] CHUE K T,KIM J N,YOO Y J,et al.Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption[J].Industrial & Engineering Chemistry Research,1995,34:591-598. [7] DO D D,WANG K.A new model for the description of adsorption kinetics in heterogeneous activated carbon[J].Carbon,1998,36:1539-1554. [8] YE Q,JIANG J,WANG C,et al.Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature[J].Energy & Fuels,2012,26:2497-2504. [9] HWANG C C,JIN Z,LU W,et al.In situ synthesis of polymer-modified mesoporous carbon cmk-3 composites for CO2 sequestration[J].Acs Applied Materials & Interfaces,2011,3:4782-4786. [10] MEIS N N A H,FREY A M,BITTER J H,et al.Carbon nanofiber-supported K2CO3 as an efficient low-temperature regenerable CO2 sorbent for post-combustion capture[J].Industrial & Engineering Chemistry Research,2013,52:12812-12818. [11] BEZERRA D P,OLIVEIRA R S,VIEIRA R S,et al.Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X[J].Adsorption-Journal of the International Adsorption Society,2011,17:235-246. [12] SU F,LU C.CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J].Energy & Environmental Science,2012,5:9021-9027. [13] GRAJCIAR L,CEJKA J,ZUKAL A,et al.Controlling the adsorption enthalpy of CO2 in zeolites by framework topology and composition[J].ChemSusChem,2012,5:2011-2022. [14] WALTON K S,ABNEY M B,LEVAN Douglas M.CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange[J].Microporous and Mesoporous Materials,2006,91:78-84. [15] BERTSCH L,HABGOOD H W.An infrared spectroscopic study of the adsorption of water and carbon dioxide by linde molecular sieve X1[J].The Journal of Physical Chemistry,1963,67:1621-1628. [16] REGE S U,YANG R T.A novel FTIR method for studying mixed gas adsorption at low concentrations:H2O and CO2 on nax zeolite and γ-alumina[J].Chemical Engineering Science,2001,56:3781-3796. [17] WANG Q,LUO J,ZHONG Z,et al.CO2 capture by solid adsorbents and their applications:current status and new trends[J].Energy & Environmental Science,2011,4:42. [18] LU H,KHAN A,PRATSINIS S E,et al.Flame-made durable doped-CaO nanosorbents for CO2 capture[J].Energy & Fuels,2008,23:1093-1100. [19] LI L,KING D L,NIE Z,et al.Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture[J].Industrial & Engineering Chemistry Research,2009,48:10604-10613. [20] LYSIKOV A I,SALANOV A N,OKUNEV A G.Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J].Industrial & Engineering Chemistry Research,2007,46:4633-4638. [21] BLAMEY J,ANTHONY E J,WANG J,et al.The calcium looping cycle for large-scale CO2 capture[J].Progress in Energy and Combustion Science,2010,36:260-279. [22] MANOVIC V,ANTHONY E J.Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles[J].Environmental Science & Technology,2007,41:1420-1425. [23] MANOVIC V,ANTHONY E J.Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J].Environmental Science & Technology,2008,42:4170-4174. [24] NAKAGAWA K,OHASHI T.A novel method of CO2 capture from high temperature gases[J].Journal of The Electrochemical Society,1998,145:1344-1346. [25] NAIR B N,YAMAGUCHI T,KAWAMURA H,et al.Proc-essing of lithium zirconate for applications in carbon dioxide separation:structure and properties of the powders[J].Journal of the American Ceramic Society,2004,87:68-74. [26] OCHOA-FERNÁNDEZ E,RØNNING M,GRANDE T,et al.Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture[J].Chemistry of Materials,2006,18:1383-1385. [27] PFEIFFER H,VÁZQUEZ C,LARA V H,et al.Thermal behavior and CO2 absorption of Li2-xNaxZrO3 solid solutions[J].Chemistry of Materials,2007,19:922-926. [28] VELIZ-ENRIQUEZ M Y,GONZALEZ G,PFEIFFER H.Synth-esis and CO2 capture evaluation of Li2-xKxZrO3 solid solutions and crystal structure of a new lithium-potassium zirconate phase[J].Journal of Solid State Chemistry,2007,180:2485-2492. [29] WILLIAMS G R,O'HARE D.Towards understanding,control and application of layered double hydroxide chemistry[J].Journal of Materials Chemistry,2006,16:3065-3074. [30] RAM REDDY M K,XU Z P,LU G Q,et al.Layered double hydroxides for CO2 capture:structure evolution and regeneration[J].Industrial & Engineering Chemistry Research,2006,45:7504-7509. [31] SHARMA U,TYAGI B,JASRA R V.Synthesis and chara-cterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption[J].Industrial & Engineering Chemistry Research,2008,47:9588-9595. [32] RAM REDDY M K,XU Z P,DINIZ DA COSTA J C.Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives[J].Industrial & Engineering Chemistry Research 2008,47:2630-2635. [33] OLIVEIRA E L G,GRANDE C A,RODRIGUES A E. CO2 sorption on hydrotalcite and alkali-modified(K and Cs)hydrotalcites at high temperatures[J].Separation and Purification Technology,2008,62:137-147. [34] WALSPURGER S,BOELS L,COBDEN P D,et al.The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina-and hydrotalcite-based materials for CO2 sorption at high temperatures[J].ChemSusChem,2008,1:643-650. [35] MEIS N N A H,BITTER J H,DE JONG K P.Support and size effects of activated hydrotalcites for precombustion CO2 capture[J].Industrial & Engineering Chemistry Research,2009,49:1229-1235. [36] XU X,SONG C,ANDRESEN J M,et al.Novel polyethyleni-mine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J].Energy & Fuels,2002,16:1463-1469. [37] FRANCHI R S,HARLICK P J E,SAYARI A.Applications of pore-expanded mesoporous silica.2.Development of a high-capacity,water-tolerant adsorbent for CO2[J].Industrial & Engineering Chemistry Research,2005,44:8007-8013. [38] YUE M B,CHUN Y,CAO Y,et al.CO2 capture by as-prepared SBA-15 with an occluded organic template[J].Advanced Functional Materials,2006,16:1717-1722. [39] YUE M B,SUN L B,CAO Y,et al.Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J].Microporous and Mesoporous Materials,2008,114:74-81. [40] HICKS J C,DRESE J H,FAUTH D J,et al.Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J].Journal of the American Chemical Society,2008,130:2902-2903. [41] LIANG Z,FADHEL B,SCHNEIDER C J,et al.Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties[J].Microporous and Mesoporous Materials,2008,111:536-543. [42] LIU FQ,WANG L,HUANG Z-G,et al.Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air[J].Acs Applied Materials & Interfaces,2014,6:4371-4381. [43] ZHANG Z,MA X,WANG D,et al.Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas[J].AIChE Journal,2012,58:2495-2502. [44] CHOI S,DRESE J H,EISENBERGER P M,et al.Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air[J].Environmental Science & Technology,2011,45:2420-2427. [45] BUILES S,VEGA L F.Effect of immobilized amines on the sorption properties of solid materials:Impregnation versus grafting[J].Langmuir,2013,29:199-206. [46] STOCK N,BISWAS S.Synthesis of metal-organic frameworks(MOFs):routes to various mof topologies,morphologies,and composites[J].Chem.Rev.,2012,112:933-969. [47] MILLWARD A R,YAGHI O M.Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J].Journal of the American Chemical Society,2005,127:17998-17999. [48] BOURRELLY S,LLEWELLYN P L,SERRE C,et al.Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates mil-53 and mil-47[J].Journal of the American Chemical Society,2005,127:13519-13521. [49] THALLAPALLY P K,TIAN J,RADHA KISHAN M,et al.Flexible(breathing)interpenetrated metal-organic frameworks for CO2 separation applications[J].Journal of the American Chemical Society,2008,130:16842-16843. [50] FARHA O K,YAZAYDIN A O,ERYAZICI I,et al.De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities[J].Nature Chemistry,2010,2:944-948. [51] FURUKAWA H,KO N,GO Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329:424-428. [52] NELSON A P,FARHA O K,MULFORT K L,et al.Super-critical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials[J].Journal of the American Chemical Society,2008,131:458-460. [53] LIU J,WANG Y,BENIN A I,et al.CO2/H2O adsorption equilibrium and rates on metal-organic frameworks:HKUST-1 and Ni/DOBDC[J].Langmuir,2010,26:14301-14307. [54] APREA P,CAPUTO D,GARGIULO N,et al.Modeling carbon dioxide adsorption on microporous substrates:comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve[J].Journal of Chemical & Engineering Data,2010,55:3655-3661. [55] CASKEY S R,WONG-FOY A G,MATZGER A J.Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J].Journal of the American Chemical Society,2008,130:10870-10871. [56] LI J-R,TAO Y,YU Q,et al.Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type mof material with N-rich chiral open channels[J].Chemistry-A European Journal,2008,14:2771-2776. [57] LIU B,SMIT B.Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks[J].Langmuir,2009,25:5918-5926. [58] WU D,XU Q,LIU D,et al.Exceptional CO2 capture capa-bility and molecular-level segregation in a Li-modified metal-organic framework[J].The Journal of Physical Chemistry C,2010,114:16611-16617. [59] YAZAYDLN A Ö,BENIN A I,FAHEEM S A,et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules[J].Chemistry of Materials,2009,21:1425-1430. [60] BORDIGA S,REGLI L,BONINO F,et al.Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by Ir[J].Physical Chemistry Chemical Physics,2007,9:2676-2685. [61] KRISHNA R,VAN BATEN J M.A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks[J].Separation and Purification Technology,2012,87:120-126. [62] DEMESSENCE A,D'ALESSANDRO D M,FOO M L,et al.Strong CO2 binding in a water-stable,triazolate-bridged metal-organic framework functionalized with ethylenediamine[J].Journal of the American Chemical Society,2009,131:8784-8786. [63] TORRISI A,BELL R G,MELLOT-DRAZNIEKS C.Functio-nalized mofs for enhanced CO2 capture[J].Crystal Growth & Design,2010,10:2839-2841. [64] CMARIK G E,KIM M,COHEN S M,et al.Tuning the adsorption properties of UiO-66 via ligand functionalization[J].Langmuir,2012,28:15606-13. [65] XIN CL,ZHAO N,ZHAN H,et al.Phase transition of silica in the TMB-P123-H2O-TEOS quadru-component system:a feasible route to different mesostructured materials[J].Journal of Colloid and Interface Science,2014,433:176-182. [66] XIN C L,JIAO X,YIN Y,et al.Enhanced CO2 adsorption capacity and hydrothermal stability of HKUST-1 via introduction of siliceous mesocellular foams(MCFs)[J].Industrial & Engineering Chemistry Research,2016,55:7950-7957. [67] XIN C L,ZHAN H,HUANG X,et al.Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J].RSC Advances,2015,5:27901-27911. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[4] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[5] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[8] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[9] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[10] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[11] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[12] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[15] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |