[1] 李娟,吴梁鹏,邱勇,等.费托合成催化剂的研究进展[J].化工进展,2013,32(s1):100-109. LI J,WU L P,QU Y,et al.Research advances in catalysts for Fischer-Tropsch synthesis[J].Chemical Industry and Engineering Progress,2013,32(s1):100-109.
[2] 胡徐腾,李振宇,王正元.我国能源化工面临的挑战及对策思考(Ⅱ)[J].化工进展,2006,25(4):351-356. HU X T,LI Z Y,WANG Z Y.Challenges for Chinese energy chemical industry and approaches(Ⅱ)[J].Chemical Industry and Engineering Progress,2006,25(4):351-356.
[3] MA Y,WANG X L,JIA Y S,et al.Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews,2014,114(19):9987-10043.
[4] 王永杰.21世纪能源走势浅析[J].精细石油化工进展,2000,1(6):1-7. WANG Y J.Analysis of energy trend in 21st Century[J].Advances in Fine Petrochemicals,2000,1(6):1-7.
[5] 李振宇,黄格省.推动我国能源生产革命的途径分析[J].化工进展,2015,34(10):3521-3529. LI Z Y,HUANG G S.Analysis on ways to promote energy production revolution in China[J]. Chemical Industry and Engineering Progress,2015,34(10):3521-3529.
[6] 张骞,周莹,张钊,等.表面等离子体光催化材料[J].化学进展,2013,25(12):2020-2027. ZHANG Q,ZHOU Y,ZHANG Z,et al.Plasmonic photocatalyst[J]. Progress in Chemistry,2013,25(12):2020-2027.
[7] WANG H,ZHOU W,LIU J X,et al.Platinum modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis[J].Journal of the American Chemical Society,2013,135(10):4149-4158.
[8] VAN DER LAAN G P,BEENACKERS A.Kinetics and selectivity of the Fischer-Tropsch synthesis:a literature review[J].Catalysis Reviews,1999,41(3/4):255-318.
[9] KANG J C,ZHANG S L,ZHANG Q H,et al.Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel[J].Angewandte Chemie International Edition,2009,121(14):2603-2606.
[10] 郭向云,郭小宁.一种光催化费托合成方法及使用的催化剂:104403682 A[P].2015-03-11. GUO X Y,GUO X N. A photocatalytic Fischer-Tropsch synthesis method and the used catalyst:104403682 A[P].2015-03-11.
[11] GUO X N,JIAO Z F,JIN G Q,et al.Photocatalytic Fischer-Tropsch Synthesis on graphene-supported worm-like ruthenium nanostructures[J].ACS Catalysis,2015,5(6):3836-3840.
[12] 张铁锐,陈广波,赵宇飞,等.一种光催化一氧化碳加氢制备碳二以上高碳烃用镍基光催化剂的制备方法及应用:105056952 A[P]. 2015-11-18. ZHANG T R,CHEN G B,ZHAO Y F,et al.Preparation and application of a nickel-based photocatalyst for the production of C2+ hydrocarbons in the photocatalytic CO hydrogenation reaction:105056952 A[P]. 2015-11-18.
[13] ZHAO Y,ZHAO B,LIU J,et al.Oxide-modified nickel photocatalyst for the production of hydrocarbons in visible light[J].Angewandte Chemie International Edition,2016,55:4215-4219.
[14] YU S Y,ZHANG T,XIE Y H,et al.Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal FT synthesis[J].International Journal of Hydrogen Energy,2015,40(1):870-877.
[15] WANG L M,WANG L Q,ZHANG Y C,et al.Effect of photocatalysis on Fischer-Tropsch synthesis activity and selectivity of the TiO2 nanotube supported Co Catalyst[EB/OL]. Beijing:Sciencepaper Online[2016-12-27]. http://www.paper.edu.cn/releasepaper/content/201612-557.
[16] LIN X H,YANG K,SI R R,et al.Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2[J].Applied Catalysis B:Environmental,2014,147(7):585-591.
[17] LIN X H,LIN L L,HUANG K,et al.CO methanation promoted by UV irradiation over Ni/TiO2[J].Applied Catalysis B:Environmental,2015,168:416-422.
[18] GUO D Z,XUE Z Q,CHEN Q,et al.Synthesis of methane in nanotube channels by a flash[J]. Journal of the American Chemical Society,2006,128(47):15102-15103.
[19] LI X,WEN J Q,LOW J X,et al.Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J].Science China Materials,2014,57(1):70-100.
[20] HABISREUTINGER S N,SCHMIDT-MENDE L,STOLARCZYK J K.Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition,2013,52(29):7372-7408.
[21] HALMANN M.Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J].Nature,1978,275(5676):115-116.
[22] CHEN X B,SHEN S H,GUO L J,et al.Semiconductor-basedphotocatalytic hydrogen generation[J].Chemical Reviews,2010,110(11):6503-6570.
[23] JIA L S,LI J J,FANG W P.Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide[J].Catalysis Communications,2009,11(2):87-90.
[24] LI P,ZHOU Y,TU W G,et al.Direct growth of Fe2V4O13 nanoribbons on a stainless-steel mesh for visible-light photoreduction of CO2 into renewable hydrocarbon fuel and degradation of gaseous isopropyl alcohol[J]. ChemPlusChem,2013,78(3):274-278.
[25] TSAI C W,CHEN H M,LIU R S,et al. Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol[J].The Journal of Physical Chemistry C,2011,115(20):10180-10186.
[26] CHEN J S,XIN F,QIN S Y,et al. Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts[J].Chemical Engineering Journal,2013,230:506-512.
[27] HWANG J S,CHANG J S,PARK S E,et al.Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts[J]. Topics in Catalysis,2005,35(3/4):311-319.
[28] ASHFORD D L,GISH M K,VANNUCCI A K,et al.Molecular chromophore-catalyst assemblies for solar fuel applications[J]. Chemical Reviews,2015,115(23):13006-13049.
[29] SONG W,LUO H,HANSON K,et al.Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells(DSPEC)[J].Energy & Environmental Science,2013,6(4):1240-1248.
[30] CHUEH W C,FALTER C,ABBOTT M,et al.High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science,2010,330(6012):1797-1801.
[31] STAMATIOU A,LOUTZENHISER P G,STEINFELD A.Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions[J].Chemistry of Materials,2009,22(3):851-859.
[32] MENG X G,WANG T,LIU L Q,et al.Photothermal conversion of CO2 into CH4 with H2 over groupⅧ nanocatalysts:an alternative approach for solar fuel production[J]. Angewandte Chemie International Edition,2014,126(43):11662-11666.
[33] CHANMANEE W,ISLAM M F,DENNIS B H,et al.Solar photothermochemical alkane reverse combution[J].Proceedings of the National Academy of Sciences of the United States of America,2016,149(Pt3):1094-1095.
[34] LIN L L,WANG K,YANG K,et al.The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2-x)Nx[J].Applied Catalysis B:Environmental,2016,204:440-455.
[35] FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[36] RITTERSKAMP P,KUKLYA A,KERPEN K,et al.A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation-reversible storage of oxygen and hydrogen[J]. Angewandte Chemie International Edition,2007,46(41):7770-7774.
[37] 李秋叶,杜全超,吕功煊.不同压力下光热催化分解水制氢行为研究[J].分子催化,2008,22(2):177-181. LI Q Y,DU Q C,LV G X.Investigation of photothermal-catalytic hydrogen evolution from water splitting under different pressure[J].Journal of Molecular Catalysis(China),2008,22(2):177-181.
[38] LI Q Y,LV G X.Significant effect of pressure on the H2 releasing from photothermal-catalytic water steam splitting over TiSi2 and Pt/TiO2[J].Catalysis Letters,2008,125(3):376-379.
[39] 祝星,王华,魏永刚,等.金属氧化物两步热化学循环分解水制氢[J]. 化学进展,2010,22(5):1010-1020. ZHU X,WANG H,WEI Y G,et al.Hydrogen production by two-step water-splitting thermocatalytic cycle based on metal oxide redox system[J]. Progress in Chemistry,2010,22(5):1010-1020.
[40] KODAMA T,SHIMIZU T,SATOH T,et al.Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(Ⅱ)-ferrite redox system[J].Solar Energy,2002,73(5):363-374.
[41] MÜLLER R,STEINFELD A.H2O-splitting thermochemical cycle based on ZnO/Zn-redox:quenching the effluents from the ZnO dissociation[J].Chemical Engineering Science,2008,63(1):217-227.
[42] STEINFELD A.Solar thermochemical production of hydrogen——a review[J].Solar Energy,2005,78(5):603-615.
[43] ZHANG Y W,CHEN J C,XU C Y,et al.A novel photo-thermochemical cycle of water-splitting for hydrogen production based on TiO2-x/TiO2[J].International Journal of Hydrogen Energy,2016,41(4):2215-2221. |