[1] 葛庆杰,徐恒泳,李文钊. 煤层气经合成气制液体燃料的关键技术[J]. 化工进展,2009,28(6):917-921.[2] 李德宝,马玉刚,齐会杰,等. CO加氢合成低碳混合醇催化体系研究新进展[J]. 化学进展,2004,16(4):584-592.[3] 李文怀,马玉刚,张侃,等. 煤基合成气合成低碳醇进展[J]. 煤化工,2003(5):12-15.[4] 傅挺进. 合成气制低碳醇的经济性分析[J]. 泸天化科技,2013(4):271-273.[5] 士丽敏,储伟,刘增超. 合成气制低碳醇用催化剂的研究进展[J]. 化工进展,2011,30(1):162-166.[6] 马建兵,郑学明,尚会建,等. 低碳醇合成催化剂研究进展[J]. 化工进展,2008,27(s1):269-272.[7] 门秀杰,崔德春,于广欣,等. 合成气制低碳醇技术在中国的研究进展及探讨[J]. 现代化工,2013,33(12):21-23.[8] 宁文生,张伟,金杨福,等. 用于低碳混合醇合成的Fe/CuZnSi催化剂研究[J]. 现代化工,2013,33(10):66-69.[9] 苏艳敏,郑化安,付东升,等. Cu-Fe基催化剂在煤基合成气制低碳混合醇中的应用[J]. 洁净煤技术,2013,19(5):68-73.[10] 高旭敏. 碳纳米管促进的Co-Cu氧化物基低碳醇合成催化剂的制备研究[D]. 厦门:厦门大学,2007.[11] 张建国,宋昭峥,史德文,等. 合成气合成低碳混合醇技术的研究[J]. 现代化工,2007,27(2):494-496.[12] 黄学庆,徐明霞,李学福,等. 合成气制低碳混合醇催化剂研究进展[J]. 石油与天然气化工,2001,30(4):167-171.[13] 山西煤化所. “合成气制低碳混合醇新型催化剂及配套工艺技术”取得重大突破[EB/OL]. [2011-01-06]. http://www.sxicc.ac.cn/xwzx/ kydt/201101/t20110106_3055045.html.[14] 神华煤制油合成气制混合醇装置打通全程[EB/OL]. [2014-09-24]. http://www.coalstudy.com/news/dlhgzx/hg/4875.html.[15] 魏双绍. 低碳混合醇研究现状及开发建议[J]. 天然气化工,1990,15(6):49-55.[16] 殷玉圣,赵丰刚,张皓. 合成气合成低碳醇Cu系催化剂的研究[J]. 化学反应工程与工艺,2000,16(4):344-349.[17] Hoflund G B,Epling W S,Minahan D M. Reaction and surface characterization study of higher alcohol synthesis catalysts Ⅻ:K and Pd promoted Zn/Cr/Mn spinel[J]. Catalysis Today,1999,52(1):99-109.[18] Jiang T,Niu Y,Zhong B. Synthesis of higher alcohols from syngas over Zn-Cr-K catalyst in supercritical fluids[J]. Fuel Process Technology,2001,73(3):175-183.[19] 姜涛,牛玉琴,钟炳. 在Zn-Cr催化剂上超临界相合成低碳醇的链增长机理[J]. 燃料化学学报,2000,28(2):101-104.[20] Hilmen A M,Xu M,Gines M J L,et al. Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides[J]. Appl. Catal. A:General,1998,169(2):355-372.[21] Majocchi L,Lietti L,Beretta A,et al. Synthesis of short chain alcohols over a Cs-promoted Cu/ZnO/Cr2O3 catalyst[J]. Appl. Catal. A:General,1998,166(2):393-405.[22] Camposmartin J M,Guerreroruiz A,Fierro J LG. Structural and surface properties of CuO-ZnO-Cr2O3 catalysts and their relationship with selectivity to higher alcohol synthesis[J]. Journal of Catalysis,1995,156(2):208-218.[23] 郭伟,高文桂,王华,等. Fe添加对Cu/Zn/ZrO2催化剂CO2加氢合成低碳醇性能的影响[J]. 材料导报B,2013,27(10):44-47.[24] Ding M,Qiu M,Wang T,et al. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis[J]. Applied Energy,2012,97:543-547.[25] 房德仁,李婉君,刘中民,等. Cu-Co合成低碳醇催化剂的性能[J]. 精细石油化工,2014,31(3):21-26.[26] 房德仁,李婉君,刘中民,等. Cu-Fe合成低碳醇催化剂性能研究[J].工业催化,2013,21(7):39-44.[27] 房德仁,李婉君,刘中民,等. 老化时间对Cu-Co合成低碳醇催化剂性能的影响[J]. 工业催化,2013,21(9):38-42.[28] 房德仁,李婉君,赵金波,等. 加料方式对Cu-Co合成低碳醇催化剂性能的影响[J]. 工业催化,2014,22(3):199-205.[29] Zhang H,Liang X,Dong X,et al. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols[J]. Catalysis Surveys from Asia,2009,13(1):41-58.[30] Dong X,Liang X,Li H,et al. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas[J]. Catalysis Today,2009,147(2):158-165.[31] 韩涛,黄伟,王晓东,等. Ce-Cu-Co/CNTs催化剂催化合成气制低碳醇及乙醇的研究[J]. 物理化学学报,2014,30(11):2127-2133.[32] Lee J H,Reddy K. H,Jung J S,et al. Role of support on higher alcohol synthesis from syngas[J]. Applied Catalysis A:General,2014,480:128-133.[33] Prieto G,Beijer S,Smith M L. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angew Chem. Int. Ed.,2014,53(25):6397-6401.[34] Liu G,Geng Y,Pan D,et al. Bi-metal Cu-Co from LaCo1-xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology,2014,128:289-296.[35] Fang Y,Liu Y,Deng W,et al. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas[J]. Journal of Energy Chemistry,2014,23(4):527-534.[36] 徐润,马中义,杨成,等. Mn助剂对CuFeZrO2低碳醇合成催化剂的修饰作用[J]. 物理化学学报,2003,19(5):423-427.[37] Chen H,Lin J,Tan K,et al. Comparative studies of manganese-doped copper-based catalysts:The promotereffect of Mn on methanol synthesis[J]. Applied Surface Science,1998,126(3/4):323-331.[38] 陈小平,吴贵升,孙予罕,等. CO加氢合成甲醇Cu-Mn/ZrO2催化剂反应性能的研究[J]. 天然气化工,1998,23(5):1-4.[39] Ding M Y,Qiu M H,Liu J G,et al. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for higher alcohols synthesis[J]. Fuel,2013,109(1):21-27.[40] 林明桂,房克功,李德宝,等. Zn、Mn助剂对CuFe合成低碳醇催化剂的影响[J]. 物理化学学报,2008,24(5):833-838.[41] 罗彩容,熊莲,郭海军,等. 碱金属对CO加氢制备低碳醇Cu-Fe-Co基催化剂的影响[J].高校化学工程学报,2012,26(5):823-828.[42] 毛东森,郭强胜,俞俊,等. Ce添加对Cu-Fe/SiO2催化合成气制低碳醇性能的影响[J]. 物理化学学报,2011,27(11):2639-2645.[43] 李怀峰. CuFe系催化剂上CO加氢合成低碳混合醇的研究[D]. 太原:中国科学院山西煤炭化学研究所,2003.[44] 郭强胜,毛东森,俞俊,等. 不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J]. 燃料化学学报,2012,40(9):1103-1109.[45] Gao W,Zhao Y,Liu J,et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal. Sci. Technol.,2013,3:1324-1332.[46] Lu Y,Cao B,Yu F,et al. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe Catalysts[J]. Chem. Cat. Chem.,2014,6(2):473-478.[47] Ding M,Liu J,Zhang Q,et al. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis[J]. Catalysis Communications,2012,28:138-142.[48] Ding M,Tu J,Liu J,et al. Copper-iron supported bimodal pore catalyst and its application for higher alcohols synthesis[J]. Catalysis Today,2014,234:278-284.[49] Kiatphuengporn S,Chareonpanich M,Limtrakul J. Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe-Cu catalysts for CO2 hydrogenation[J]. Chemical Engineering Journal,2014,240:527-533.[50] Surisetty V R,Hu Y,Dalai A K,et al. Structural characterization and catalytic performance of alkali (K) and metal (Co and Rh)-promoted MoS2 catalysts for higher alcohols synthesis[J]. Applied Catalysis A:General,2011,392:166-172.[51] Morrill M R,Thao N T,Agrawal P K,et al. Mixed MgAl oxide supported potassium promoted molybdenum sulfide as a selective catalyst for higher alcohol synthesis from syngas[J]. Catal. Lett.,2012,142:875-881.[52] Surisetty V R,Eswaramoorthi I,Dalai A K. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group VIII metals[J]. Fuel,2012,96:77-84.[53] Xiao H,Li D,Li W,et al. Study of induction period over K2CO3/MoS2 catalyst for higher alcohols synthesis[J]. Fuel Processing Technology,2010,91:383-387.[54] Qi H,Li D,Yang C,et al. Nickel and manganese co-modified K/MoS2 catalyst:High performance for higher alcohols synthesis from CO hydrogenation[J]. Catalysis Communications,2003,4(7):339-342.[55] 马晓明,林国栋,张鸿斌. 碳纳米管促进的Co-Mo-K硫化物基催化剂用于合成气制低碳混合醇[J]. 催化学报,2006,27(11):1019-1027.[56] Wang J,Xie J,Huang Y,et al. An efficient Ni–Mo–K sulfide catalyst doped with CNTs for conversion of syngas to ethanol and higher alcohols[J]. Applied Catalysis A:General,2013,468:44-51.[57] Surisetty V R,Tavasoli A,Dalai A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Applied Catalysis A:General,2009,365:243-251.[58] Claure M T,Chai S,Dai S,et al. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide[J]. Journal of Catalysis,2015,324:88-97.[59] Ellgen P C,Batley W J,Bhasin M M,et al.Rhodium based catalysts for conversion of synthesis gas to two-carbon chemical[J]. Adv. Chem. Ser.,1979,178:147-157.[60] Ojeda M,Lopez G M,Rojas S,et al. Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2 catalysts[J]. J. Mol. Catal. A:Chem.,2003,202:179-186.[61] Lee G V D,Ponec R. On some problems of selectivity in syngas reactions on the group VIII metals[J]. Catal. Rev. Sci. Eng.,1987,29:183.[62] Chen G C,Gao C Y,Huang Z J,et al. Synthesis of ethanol from syngas over iron promoted Rh immobilized on modified SBA-15 molecular sieve:Effect of iron loading[J]. Chem. Eng. Res. Des.,2011,89:249-253.[63] Mo X,Gao J,Goodwin Jr J G. Role of promoters on Rh/SiO2 in CO hydrogenation:A comparison using DRIFTS[J]. Catal. Today,2009,147:139-149.[64] 江海有,刘金波,蔡启瑞. 合成气制乙醇催化反应机理述评[J]. 分子催化,1994,8(6):472-480.[65] 马洪涛,王毅,包信和. 合成气制备乙醇Rh-Mn/SiO2催化剂中活性金属表面结构的表征研究[J]. 北京大学学报:自然科学版,2001,37(2):210-214.[66] 唐宏青. 合成乙醇新技术展望[J]. 中氮肥,2012(2):1-6.[67] Xiang M,Li D,Li W,et al. Performances of mixed alcohols synthesis over potassium promoted molybdenum carbides[J]. Fuel,2006,85(17-18):2662-2665.[68] Xiang M,Li D,Li W,et al. K/Fe/β-Mo2C:A novel catalyst for mixed alcohols synthesis from carbon monoxide hydrogenation[J]. Catal. Commun.,2007,8(1):88-90.[69] Xiang M,Li D,Xiao H,et al. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts[J]. Fuel,2008,87(4-5):599-603.[70] Wang N,Fang K,Jiang D,et al. Iron carbide promoted K/β-Mo2C for higher alcohols synthesis[J]. Catal. Today,2010,158(3-4):241-245.[71] 王宁,房克功,林明桂,等. 钾改性铁-钼碳化物CO加氢合成低碳混合醇的研究[J]. 天然气化工,2010,35:6-9.[72] 赵立红,闫捷,房克功,等. 纳米β-Mo2C催化剂的制备及K改性对合成低碳醇反应性能的影响[J]. 工业催化,2014,22(7):515-520.[73] 向明林,李德宝,肖海成,等. 新型K/α-MoC1-x催化剂CO加氢合成低碳混合醇的研究[J]. 燃料化学学报,2006,34(5):595-599. |