Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 6906-6919.DOI: 10.16085/j.issn.1000-6613.2024-2012
• Industrial catalysis • Previous Articles
WANG Lucy(
), HOU Yang, WANG Zhengbao(
)
Received:2024-12-10
Revised:2025-02-13
Online:2026-01-06
Published:2025-12-25
Contact:
WANG Zhengbao
通讯作者:
王正宝
作者简介:WANG Lucy(2000—),女,硕士研究生,研究方向为工业催化。E-mail:22228181@zju.edu.cn。
基金资助:CLC Number:
WANG Lucy, HOU Yang, WANG Zhengbao. Review on development of egg-shell type catalysts[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6906-6919.
WANG Lucy, 侯阳, 王正宝. 蛋壳型催化剂的研究进展[J]. 化工进展, 2025, 44(12): 6906-6919.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2012
| 催化剂 | 制备方法 | 反应 | 特色 | 参考文献 |
|---|---|---|---|---|
| 乙炔选择加氢 | 分步浸渍 | [ | ||
| 乙炔选择加氢 | [ | |||
| 浸渍液pH调控 | [ | |||
| [Mo12O40P] 3-阴离子吸附 | [ | |||
| [ | ||||
| OSI | 水和氢气同位素交换 | 疏水化载体 | [ | |
| 正十一烷为溶剂 | [ | |||
| 不同焙烧温度的载体 | [ | |||
| Ru/γ-Al2O3 | 调控HNO3与Ru比和接触时间 | [ | ||
| Ni/Al2O3/堇青石 | WI | 先Al2O3涂层后浸渍硝酸镍 | [ | |
| 甲醇重整制氢 | 高催化性能归功于Cu在载体表面的选择分布 | [ | ||
| 正辛醇为溶剂 | [ | |||
| Pd-Ni/γ-Al2O3 | 2-甲基呋喃加氢 | pH和Ni含量影响壳层 | [ | |
| Pd/α-Al2O3 | 大分子络合物浸渍 | [ | ||
| Pt/陶瓷载体 | WI | H2O2分解 | 3D打印陶瓷载体 | [ |
| CuO-Bi2O3/硅酸镁 | IM | 多次浸渍工艺 | [ |
| 催化剂 | 制备方法 | 反应 | 特色 | 参考文献 |
|---|---|---|---|---|
| 乙炔选择加氢 | 分步浸渍 | [ | ||
| 乙炔选择加氢 | [ | |||
| 浸渍液pH调控 | [ | |||
| [Mo12O40P] 3-阴离子吸附 | [ | |||
| [ | ||||
| OSI | 水和氢气同位素交换 | 疏水化载体 | [ | |
| 正十一烷为溶剂 | [ | |||
| 不同焙烧温度的载体 | [ | |||
| Ru/γ-Al2O3 | 调控HNO3与Ru比和接触时间 | [ | ||
| Ni/Al2O3/堇青石 | WI | 先Al2O3涂层后浸渍硝酸镍 | [ | |
| 甲醇重整制氢 | 高催化性能归功于Cu在载体表面的选择分布 | [ | ||
| 正辛醇为溶剂 | [ | |||
| Pd-Ni/γ-Al2O3 | 2-甲基呋喃加氢 | pH和Ni含量影响壳层 | [ | |
| Pd/α-Al2O3 | 大分子络合物浸渍 | [ | ||
| Pt/陶瓷载体 | WI | H2O2分解 | 3D打印陶瓷载体 | [ |
| CuO-Bi2O3/硅酸镁 | IM | 多次浸渍工艺 | [ |
| [1] | RUSSO Vincenzo, MASTROIANNI Luca, TESSER Riccardo, et al. Intraparticle modeling of non-uniform active phase distribution catalyst[J]. ChemEngineering, 2020, 4(2): 24. |
| [2] | IGLESIA E, SOLED S L, BAUMGARTNER J E, et al. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis[J]. Journal of Catalysis, 1995, 153(1): 108-122. |
| [3] | 戴超林, 刘平乐. 蛋壳型Ni/Al2O3催化剂的制备研究[J]. 化学研究与应用, 2007, 19(6): 660-663. |
| DAI Chaolin, LIU Pingle. Study on the preparation of eggshell type Ni/Al2O3 catalyst[J]. Chemical Research and Application, 2007, 19(6): 660-663. | |
| [4] | PAPAGEORGIOU Panayiotis, PRICE Douglas M, GAVRIILIDIS Asterios, et al. Preparation of Pt/γ-Al2O3 pellets with internal step-distribution of catalyst: Experiments and theory[J]. Journal of Catalysis, 1996, 158(2): 439-451. |
| [5] | LEE Shengyi, ARIS Rutherford. The distribution of active ingredients in supported catalysts prepared by impregnation[J]. Catalysis Reviews, 1985, 27(2): 207-340. |
| [6] | KOMIYAMA Masaharu. Design and preparation of impregnated catalysts[J]. Catalysis Reviews, 1985, 27(2): 341-372. |
| [7] | 张嘉郁, 王建国, 庞礼. 浸渍法制备的Pt/Al2O3催化剂——考查几种酸影响铂组份分布的规律[J]. 石油化工, 1981, 10(5): 305-309. |
| ZHANG Jiayu, WANG Jianguo, PANG Li. Pt/Al2O3 catalyst prepared by impregnation method—Investigate the laws of several acids affecting the distribution of platinum components[J]. Petrochemical Technology, 1981, 10(5): 305-309. | |
| [8] | 过中儒, 史鸿鑫, 徐慧珍. 钯系双金属催化剂的制备及其表面性质[J]. 催化学报, 1993, 14(1): 12-18. |
| GUO Zhongru, SHI Hongxin, XU Huizhen. Preparation and surface properties of supported bimetallic catalysts of Pd series[J]. Chinese Journal of Catalysis, 1993, 14(1): 12-18. | |
| [9] | 南军, 石芳, 隋芝宇, 等. 负载型Pd-Pt双金属催化剂中活性组分非均匀型分布研究 Ⅰ: 不同制备参数对活性组分非均匀分布的影响[J]. 石油与天然气化工, 2008, 37(4): 271-275, 261. |
| Jun NAN, SHI Fang, SUI Zhiyu, et al. Study on non-uniformity distribution of active component in the supported Pd-Pt double metal catalysts Ⅰ: Effect of different preparation parameters on non-uniformity distribution of active component[J]. Chemical Engineering of Oil & Gas, 2008, 37(4): 271-275, 261. | |
| [10] | KUHN Martin, LUCAS Martin, CLAUS Peter. Long-time stability vs deactivation of Pd-Ag/Al2O3 egg-shell catalysts in selective hydrogenation of acetylene[J]. Industrial & Engineering Chemistry Research, 2015, 54(26): 6683-6691. |
| [11] | MASHKOVSKY I S, MELNIKOV D P, MARKOV P V, et al. Single-atom alloy Pd1Ag6/Al2O3 egg-shell catalyst for selective acetylene hydrogenation[J]. Doklady Chemistry, 2023, 512(2): 272-280. |
| [12] | MARKOV Pavel V, MASHKOVSKY Igor S, BAEVA Galina N, et al. An egg-shell PdAg/α-Al2O3 single-atom alloy catalyst for selective acetylene hydrogenation[J]. Mendeleev Communications, 2023, 33(6): 836-838. |
| [13] | MASHKOVSKY Igor S, SMIRNOVA Nadezhda S, MARKOV Pavel V, et al. Performance of PdAu/Al2O3 egg-shell catalyst with isolated Pd1 sites for selective hydrogenation of acetylene[J]. Mendeleev Communications, 2024, 34(5): 718-720. |
| [14] | MASHKOVSKY I S, MARKOV P V, BAEVA G N, et al. Properties of PdAg/Al2O3 egg-shell single-atom catalysts in front-end hydrogenation of acetylene[J]. Petroleum Chemistry, 2024, 64(9): 1159-1168. |
| [15] | 王向东, 刘进军, 于洪波. 蛋壳型Pt/α-Al2O3催化剂催化6-氯-3-硝基甲苯-4-磺酸液相连续加氢合成CLT酸的研究[J]. 宁波大学学报(理工版), 2013, 26(3): 80-84. |
| WANG Xiangdong, LIU Jinjun, YU Hongbo. Synthesizing CLT acid from liquid-phase catalytic hydrogenation of 6-chloro-3-nitrotoluene-4-sulfonic acid with eggshell-shaped Pt/α-Al2O3 catalyst[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2013, 26(3): 80-84. | |
| [16] | 王芳珠, 刘晓燕, 叶阑珊, 等. 异佛尔酮在蛋壳型Pd/Al2O3催化剂上的选择性加氢[J]. 精细化工, 2015, 32(3): 337-342. |
| WANG Fangzhu, LIU Xiaoyan, YE Lanshan, et al. Selective hydrogenation of isophorone on egg-shelled Pd/Al2O3 catalyst[J]. Fine Chemicals, 2015, 32(3): 337-342. | |
| [17] | 张虓, 栾学斌, 侯朝鹏, 等. 蛋壳型Ru/Al2O3催化剂的制备及其对邻苯二甲酸酯的加氢活性[J]. 石油化工, 2023, 52(7): 889-894. |
| ZHANG Xiao, LUAN Xuebin, HOU Chaopeng, et al. Preparation of egg-shell Ru/Al2O3 catalysts and their activity for hydrogenation of phthalate esters[J]. Petrochemical Technology, 2023, 52(7): 889-894. | |
| [18] | 徐景东, 李文涛, 李慧胜, 等. 蛋壳型Co/Mo催化剂的可控制备及其加氢脱硫性能[J]. 燃料化学学报(中英文), 2025, 53(5): 725-732. |
| XU Jingdong, LI Wentao, LI Huisheng, et al. Controllable preparation and hydrodesulfurization performance of eggshell Co/Mo catalyst[J]. Journal of Fuel Chemistry and Technology, 2025, 53(5): 725-732. | |
| [19] | 付炳坤. α-甲基苯乙烯选择性加氢催化剂的制备及性能研究[D]. 青岛: 中国石油大学(华东), 2020. |
| FU Bingkun. Study on the catalysts preparation and performance of selective hydrogenation of α-methylstyrene[D]. Qingdao: China University of Petroleum (Huadong), 2020. | |
| [20] | 刘秀芳, 计扬, 李伟, 等. 蛋壳型Pd/α-Al2O3催化剂的制备及活性[J]. 催化学报, 2009, 30(3): 213-217. |
| LIU Xiufang, JI Yang, LI Wei, et al. Preparation and catalytic activity of egg-shelled catalyst Pd/α-Al2O3 [J]. Chinese Journal of Catalysis, 2009, 30(3): 213-217. | |
| [21] | 程明珠, 王学海, 陈玉香, 等. 蛋壳型Pt/γ-Al2O3催化剂的制备及其对苯的催化燃烧活性[J]. 石油化工, 2016, 45(11): 1341-1346. |
| CHENG Mingzhu, WANG Xuehai, CHEN Yuxiang, et al. Preparation of egg-shelled Pt/γ-Al2O3 catalysts and their activity in catalytic combustion of benzene[J]. Petrochemical Technology, 2016, 45(11): 1341-1346. | |
| [22] | IGLESIA Enrique, VROMAN Hilda, SOLED Stuart, et al. Selective catalysts and their preparation for catalytic hydrocarbon synthesis: US5036032[P]. 1991-07-30. |
| [23] | GALARRAGA C, PELUSO E, DE LASA H. Eggshell catalysts for Fischer-Tropsch synthesis Modeling catalyst impregnation[J]. Chemical Engineering Journal, 2001, 82(1/2/3): 13-20. |
| [24] | HAN Ting, LI Xiaopeng, LIN Chao, et al. 3 D imaging and structural analysis of a mesoporous-silica-body-supported eggshell cobalt catalyst for Fischer-Tropsch synthesis[J]. ChemCatChem, 2016, 8(18): 2860. |
| [25] | FRATALOCCHI Laura, VISCONTI Carlo Giorgio, LIETTI Luca, et al. A novel preparation method for “small” eggshell Co/γ-Al2O3 catalysts: A promising catalytic system for compact Fischer-Tropsch reactors[J]. Catalysis Today, 2015, 246: 125-132. |
| [26] | FRATALOCCHI Laura, VISCONTI Carlo Giorgio, LIETTI Luca, et al. Exploiting the effects of mass transfer to boost the performances of Co/γ-Al2O3 eggshell catalysts for the Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2016, 512: 36-42. |
| [27] | PELUSO E, GALARRAGA C, DE LASA H. Eggshell catalyst in Fischer-Tropsch synthesis Intrinsic reaction kinetics[J]. Chemical Engineering Science, 2001, 56(4): 1239-1245. |
| [28] | MAULDIN Charles H, RILEY Kenneth L. Process for the preparation of surface impregnated dispersed cobalt metal catalysts: US4977126[P]. 1990-12-11. |
| [29] | CHEN Chun, YUUDA Hisashi, LI Xiaohong. Fischer-Tropsch synthesis over one eggshell-type Co/SiO2 catalyst in a slurry phase reactor[J]. Applied Catalysis A: General, 2011, 396(1/2): 116-122. |
| [30] | MOSEEVA V S, BUKIN A N, ROZENKEVICH M B, et al. Synthesis method of hydrophobic catalysts for the hydrogen activation with a controlled platinum distribution[J]. Fusion Engineering and Design, 2021, 171: 112571. |
| [31] | LIN Tzong-Bin, CHOU Tse-Chuan. Selective hydrogenation of isoprene on eggshell and uniform palladium profile catalysts[J]. Applied Catalysis A: General, 1994, 108(1): 7-19. |
| [32] | ZHUANG Y Q, CLAEYS M, VAN STEEN E. Novel synthesis route for egg-shell, egg-white and egg-yolk type of cobalt on silica catalysts[J]. Applied Catalysis A: General, 2006, 301(1): 138-142. |
| [33] | XU Xiaofeng, HU Xin, LUO Zuwei, et al. Engineering an egg-shell structure for the Ag/SiO2 pellet catalyst for selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. New Journal of Chemistry, 2023, 47(13): 6045-6049. |
| [34] | KIM Youngji, CHO Eunkyung, Chang Hyun KO. Preparation of Ni-based egg-shell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5314-5323. |
| [35] | JANG Min-Su, CHO Eui Hyun, Kee Young KOO, et al. Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet[J]. Applied Catalysis A: General, 2017, 530: 211-216. |
| [36] | CHO Eui Hyun, Kee Young KOO, LEE Hyung Won, et al. Preparation of egg-shell-type Ni/Ru bimetal alumina pellet catalysts: Steam methane reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18350-18357. |
| [37] | CHO Eunkyung, YU Yeon Jeong, KIM Youngji, et al. Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: Enhanced coke-resistance and pellet stability[J]. Catalysis Today, 2020, 352: 157-165. |
| [38] | YU Yeon Jeong, CHO Eunkyung, Chang Hyun KO. Egg-shell-type MgAl2O4 pellet catalyst for steam methane reforming reaction activity: Effect of pellet preparation temperature[J]. Catalysts, 2022, 12(12): 1500. |
| [39] | VALIZADEH Soheil, LAM Su Shiung, Chang Hyun KO, et al. Biohydrogen production from catalytic conversion of food waste via steam and air gasification using eggshell- and homo-type Ni/Al2O3 catalysts[J]. Bioresource Technology, 2021, 320: 124313. |
| [40] | BAI Hongxin, FANG Xiangchen, PENG Chong. Synthesis of tailored egg-shell Pd@Al2O3 catalyst for catalytic hydrogenation of 2-alkylanthraquinone[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7700-7707. |
| [41] | LI Jingwei, DING Yunjie, LI Xianming, et al. New method for the preparation of nonuniform distributed Co/SiO2 catalysts[J]. Chemical Communications, 2008(45): 5954-5956. |
| [42] | LUO Wenting, Yuan LYU, GONG Leifeng, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol over egg-shell type Ir-ReO x catalysts[J]. RSC Advances, 2016, 6(17): 13600-13608. |
| [43] | GARDEZI Syed ALI, WOLAN John T, JOSEPH Babu. Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2012, 447: 151-163. |
| [44] | SCHAPER H, 刘捷. 用沉积-沉淀法制备热稳定的Ni-Al2O3催化剂[J]. 齐鲁石油化工, 1987, 15(S1): 10-17. |
| SCHAPER H, LIU Jie. Preparation of thermally stable Ni-Al2O3 catalyst by deposition-precipitation method[J]. Qilu Petrochemical Technology, 1987, 15(S1): 10-17. | |
| [45] | 邵正锋. 负载型Pd基催化剂的制备及其选择性加氢性能[D]. 大连: 大连理工大学, 2014. |
| SHAO Zhengfeng. Preparation and selective hydrogenation performance of supported Pd-based catalysts[D]. Dalian: Dalian University of Technology, 2014. | |
| [46] | JIA Xiaoqiong, CHU Qingyan, JIANG Peng, et al. Synthesis and characterization of eggshell-type Pd-Ni bimetallic nanoparticles for enhancing 2-MF hydrogenation activity[J]. Catalysis Letters, 2024, 154(8): 4955-4969. |
| [47] | 黄钟斌, 严新焕, 江玲超, 等. 高效组合型Pd/C催化剂用于Suzuki偶联反应[J]. 催化学报, 2010, 31(1): 90-94. |
| HUANG Zhongbin, YAN Xinhuan, JIANG Lingchao, et al. Efficient assembled Pd/C catalyst applied in suzuki coupling reactions[J]. Chinese Journal of Catalysis, 2010, 31(1): 90-94. | |
| [48] | ZHOU Zhiming, HU Jiawei, ZHANG Rui, et al. Revisiting the reaction kinetics of selective hydrogenation of phenylacetylene over an egg-shell catalyst in excess styrene[J]. Chemical Engineering Science, 2015, 138: 663-672. |
| [49] | SONG Jirui, WEN Lixiong, XIA Zengmin, et al. Preparation of egg-shell nanonickel catalyst for CO hydrogenation[J]. Fuel Processing Technology, 2007, 88(5): 443-449. |
| [50] | WANG Jiexin, CHEN Jianfeng. Development of a simple method for the preparation of novel egg-shell type Pt catalysts using hollow silica nanostructures as supporting precursors[J]. Materials Research Bulletin, 2008, 43(4): 889-896. |
| [51] | LE Thuy T, SHILPA Kumari, LEE Choongsze, et al. Core-shell and egg-shell zeolite catalysts for enhanced hydrocarbon processing[J]. Journal of Catalysis, 2022, 405: 664-675. |
| [52] | KWON Jae In, KIM Tae Wan, PARK Ji Chan, et al. A facile synthesis of SiO2@Co/mSiO2 egg-shell nanoreactors for Fischer-Tropsch reaction[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1787-1792. |
| [53] | KIM Soohee, KANG Shin Wook, KIM Aram, et al. A highly efficient nano-sized Cu2O/SiO2 egg-shell catalyst for C-C coupling reactions[J]. RSC Advances, 2018, 8(12): 6200-6205. |
| [54] | VINCENT Richard C, MERRILL Robert P. Concentration profiles in impregnation of porous catalysts[J]. Journal of Catalysis, 1974, 35(2): 206-217. |
| [55] | VISCONTI Carlo Giorgio. Vapor-liquid equilibria in the low-temperature Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 2014, 53(5): 1727-1734. |
| [56] | IGLESIA Enrique, REYES Sebastian C, MADON Rostam J, et al. Selectivity control and catalyst design in the Fischer-Tropsch synthesis: Sites, pellets, and reactors[J]. Advances in Catalysis, 1993, 39: 221-302. |
| [57] | KAPTEIJN Freek, DE DEUGD Ronald M, MOULIJN Jacob A. Fischer-Tropsch synthesis using monolithic catalysts[J]. Catalysis Today, 2005, 105(3/4): 350-356. |
| [58] | 肖翠微, 史士东, 王乃继, 等. 费托合成“蛋壳” 型钴基催化剂的制备及表征[J]. 现代化工, 2007, 27(9): 32-34. |
| XIAO Cuiwei, SHI Shidong, WANG Naiji, et al. Preparation and characterization of eggshell cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Modern Chemical Industry, 2007, 27(9): 32-34. | |
| [59] | 肖翠微. F-T合成“蛋壳”型Co/ZrO2/SiO2催化剂的制备及表征[J]. 煤炭转化, 2010, 33(4): 61-65, 69. |
| XIAO Cuiwei. Preparation and characterization of eggshell Co/ZrO2/SiO2 catalysts for the F-T synthesis[J]. Coal Conversion, 2010, 33(4): 61-65, 69. | |
| [60] | Cornelis Martinus LOK, BALE Sharon. Shaped eggshell catalyst containing cobalt, use and preparation thereof: US8536236[P]. 2013-09-17. |
| [61] | 鲁丰乐, 邵倪, 张海涛, 等. 蛋壳型钴基催化剂的费托合成反应性能[J]. 石油化工, 2010, 39(6): 601-606. |
| LU Fengle, SHAO Ni, ZHANG Haitao, et al. Performance of eggshell Co-based catalyst for Fischer-Tropsch synthesis[J]. Petrochemical Technology, 2010, 39(6): 601-606. | |
| [62] | 刘治华, 余长春, 杨盼, 等. 钍对浸渍型和蛋壳型钴基催化剂Co/SiO2费托合成性能的影响[J]. 物理化学学报, 2015, 31(B5): 90-94. |
| LIU Zhihua, YU Changchun, YANG Pan, et al. Effect of thorium on Fischer-Tropsch synthesis performance over impregnated and eggshell Co/SiO2 [J]. Acta Physico-Chimica Sinica, 2015, 31(B5): 90-94. | |
| [63] | 孙霞, 侯朝鹏, 夏国富, 等. 一种壳层分布催化剂制备方法: CN101462079B[P]. 2011-07-20. |
| SUN Xia, HOU Chaopeng, XIA Guofu, et al. A method for preparing shell distributed catalysts: CN101462079B[P]. 2011-07-20. | |
| [64] | 孙霞, 侯朝鹏, 夏国富, 等. 蛋壳型分布费托合成催化剂Co/Al2O3的表征及催化性能[J]. 石油炼制与化工, 2011, 42(7): 28-32. |
| SUN Xia, HOU Chaopeng, XIA Guofu, et al. Characterization and catalitic property of eggshell Co/Al2O3 catalyst for F-T synthesis[J]. Petroleum Processing and Petrochemicals, 2011, 42(7): 28-32. | |
| [65] | 孙霞, 侯朝鹏, 夏国富, 等. 一种壳层分布催化剂及其制备方法和应用: CN106607055B[P]. 2019-06-14. |
| SUN Xia, HOU Chaopeng, XIA Guofu, et al. A shell distributed catalyst and its preparation method and application: CN106607055B[P]. 2019-06-14. | |
| [66] | SHAO Zhengfeng, LI Chuang, CHEN Xiao, et al. A facile and controlled route to prepare an eggshell Pd catalyst for selective hydrogenation of phenylacetylene[J]. ChemCatChem, 2010, 2(12): 1555-1558. |
| [67] | WEN Xin, LI Rushi, YANG Yixuan, et al. An egg-shell type Ni/Al2O3 catalyst derived from layered double hydroxides precursor for selective hydrogenation of pyrolysis gasoline[J]. Applied Catalysis A: General, 2013, 468: 204-215. |
| [68] | 聂文杰, 张蕾, 沙响玲. NiO/γ-Al2O3单金属催化剂的制备及脱硫性能研究[J]. 西安科技大学学报, 2016, 36(5): 675-679. |
| NIE Wenjie, ZHANG Lei, SHA Xiangling. Preparation of NiO/γ-Al2O3 catalyst and its desulfurization performance[J]. Journal of Xi’an University of Science and Technology, 2016, 36(5): 675-679. | |
| [69] | 王嘉, 李文翠, 吴凡, 等. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2024, 43(8): 4393-4402. |
| WANG Jia, LI Wencui, WU Fan, et al. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. | |
| [70] | 戴云生, 董守安, 潘再富, 等. 催化氢解脱苄基Pd/C催化剂的研究和应用[J]. 工业催化, 2011, 19(4): 7-10. |
| DAI Yunsheng, DONG Shouan, PAN Zaifu, et al. Research on and application of Pd/C catalysts for catalytic hydrogenolysis debenzylation[J]. Industrial Catalysis, 2011, 19(4): 7-10. | |
| [71] | 梁乾星. 蛋壳型Ni/Al2O3催化剂的制备方法的研究[J]. 科技创新与生产力, 2013(10): 103-106. |
| LIANG Qianxing. Preparation method of eggshell Ni/Al2O3 catalyst[J]. Sci-Tech Innovation and Productivity, 2013(10): 103-106. | |
| [72] | CARRARA N, BADANO J M, BETTI C, et al. Selective hydrogenation by novel composite supported Pd egg-shell catalysts[J]. Catalysis Communications, 2015, 61: 72-77. |
| [73] | 韦彩琴, 王琳琳, 陈小鹏, 等. 微米级蛋壳型Ni/SFC3R催化C5石油树脂加氢反应[J]. 精细化工, 2016, 33(9): 1061-1068. |
| WEI Caiqin, WANG Linlin, CHEN Xiaopeng, et al. Micro-size eggshell-type Ni/SFC3R catalyst for C5 petroleum resin hydrogenation reaction[J]. Fine Chemicals, 2016, 33(9): 1061-1068. | |
| [74] | SILVA Hugo, NIELSEN Morten G, FIORDALISO Elisabetta M, et al. Synthesis and characterization of Fe-Ni/γ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition[J]. Applied Catalysis A: General, 2015, 505: 548-556. |
| [75] | LEE Jong-Heon, Seongbin JO, KIM Tae-Young, et al. Preparation of eggshell-type Ru/Al2O3 catalysts for hydrogen production using steam-methane reforming on PEMFC[J]. Catalysts, 2021, 11(8): 951. |
| [76] | PEREIRA Victória Gonçalves F, RODRIGUES Clarissa Perdomo, TONIOLO Fabio Souza. Ni/Al2O3 supported on cordierite monoliths for methane steam reforming: Influence of catalyst coating methodology[J]. Catalysis Communications, 2023, 183: 106759. |
| [77] | VALIZADEH Soheil, Chang Hyun KO, LEE Jechan, et al. Effect of eggshell- and homo-type Ni/Al2O3 catalysts on the pyrolysis of food waste under CO2 atmosphere[J]. Journal of Environmental Management, 2021, 294: 112959. |
| [78] | YOON Byung Sun, YU Yeon Jeong, PARK Gwan-Joong, et al. Preparation and optimization of eggshell-type Cu/Zn/Al2O3 pellet catalysts for methanol reforming[J]. Catalysis Today, 2024, 425: 114353. |
| [79] | 任栎, 张向辉, 王光永, 等. 乙烯气相法制醋酸乙烯Pd-Au催化剂研究进展[J]. 低碳化学与化工, 2024, 49(3): 30-41. |
| REN Li, ZHANG Xianghui, WANG Guangyong, et al. Research progress on Pd-Au catalyst for producing vinyl acetate by ethylene gas phase process[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(3): 30-41. | |
| [80] | BISSOT Thomas Charles. Surface impregnated catalyst: US4048096[P]. 1977-09-13. |
| [81] | 杨运信, 张士福, 查晓钟, 等. 合成醋酸乙烯酯的催化剂及其制备方法: CN102218345A[P]. 2011-10-19. |
| YANG Yunxin, ZHANG Shifu, Xiaozhong Cha, et al. Catalysts for the synthesis of vinyl acetate and their preparation methods: CN102218345A[P]. 2011-10-19. | |
| [82] | 刘军晓, 杨运信, 张丽斌. 醋酸乙烯催化剂及其制备方法: CN106423284B[P]. 2019-01-25. |
| LIU Junxiao, YANG Yunxin, ZHANG Libin. Acetic acid vinyl catalyst and its preparation method: CN106423284B[P]. 2019-01-25. | |
| [83] | 孙国方, 郑修新, 臧甲忠, 等. 金属前驱体和分散剂对CO偶联制草酸二甲酯Pd/α-Al2O3催化剂性能的影响[J]. 天然气化工(C1化学与化工), 2021, 46(6): 46-51, 85. |
| SUN Guofang, ZHENG Xiuxin, ZANG Jiazhong, et al. Effects of metal precursors and dispersants on performance of Pd/α-Al2O3 catalyst for CO coupling to dimethyl oxalate[J]. Natural Gas Chemical Industry, 2021, 46(6): 46-51, 85. | |
| [84] | QIU Yejun, CHEN Jixiang, ZHANG Jiyan. A simple preparation method of eggshell Ni/MgO-Al2O3 catalyst for partial oxidation of methane[J]. Reaction Kinetics and Catalysis Letters, 2008, 94(1): 149-155. |
| [85] | REID Simon, LECARPENTIER Frederic, SYMONS Digby, et al. Towards an advanced 3D-printed catalyst for hydrogen peroxide decomposition: Development and characterisation[J]. Catalysis Today, 2023, 418: 114155. |
| [86] | SUZUKI Ken, YAMAGUCHI Tatsuo, MATSUSHITA Ken, et al. Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure[J]. ACS Catalysis, 2013, 3(8): 1845-1849. |
| [87] | 姬学刚, 宋锋. 三维工艺1,4-丁炔二醇催化剂的开发[J]. 辽宁化工, 2024, 53(1): 147-150. |
| JI Xuegang, SONG Feng. Development of catalyst for 1,4-butynediol production by three-dimensional process[J]. Liaoning Chemical Industry, 2024, 53(1): 147-150. | |
| [88] | 王逸凝, 李永旺, 徐元源, 等. 基于详细机理动力学的费-托合成单颗粒催化剂模拟Ⅱ.扩散反应行为及活性分布[J]. 催化学报, 2001, 22(1): 40-44. |
| WANG Yining, LI Yongwang, XU Yuanyuan, et al. Modeling of Fischer-Tropsch catalyst pellet on basis of detailed mechanism kinetics Ⅱ. Diffusion-reaction behavior and non-uniform activity distribution[J]. Chinese Journal of Catalysis, 2001, 22(1): 40-44. | |
| [89] | LATSIOU Angeliki I, BEREKETIDOU Olga A, CHARISIOU Nikolaos D, et al. Synthesis and mathematical modelling of the preparation process of nickel-alumina catalysts with egg-shell structures for syngas production via reforming of clean model biogas[J]. Catalysts, 2022, 12(3): 274. |
| [90] | Wail EL-BAZI, BIDEQ Mustapha, YADIR Said, et al. Effects of catalyst distribution, particle geometry, and process conditions on the behavior of a water gas shift reactor under moderate pressures: A modeling study[J]. Reaction Kinetics, Mechanisms and Catalysis, 2023, 136(4): 1859-1890. |
| [91] | RIEDER David R, PETERS Elias A J F, KUIPERS Johannes A M. Modeling the drying process of porous catalysts: Impact of the pore size distribution[J]. Industrial & Engineering Chemistry Research, 2023, 62(46): 20006-20016. |
| [1] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [2] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [3] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [4] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [5] | ZHAO Siyang, LI Chenran, LIU Yang. Process optimization for regulating diene selectivity of MTO regenerated catalyst through pre-carbon deposition using C4 by-product [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 205-212. |
| [6] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [7] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [8] | LIU Chao, DING Chengao, WU Baoshun, LEI Xinyu, WANG Guangying, YU Zhengwei. Effect of TiO2 support particle size on the denitrification and water/sulfur poisoning resistance of RuO x -V2O5-WO3/TiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 232-242. |
| [9] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [10] | TAN Fangfang, CHENG An, LIU Jia, WANG Yuanbo, WANG Jun. A novel visible-light-driven method for the one-step synthesis of methyl p-methoxybenzoate from p-methoxybenzaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 434-440. |
| [11] | XU Cong, FENG Yingjie, LIU Dongbing, XIE Zaiku. Review of zeolite confined Pt-based catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4954-4967. |
| [12] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [13] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [14] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [15] | WU Zifeng, WANG Hongjuan, WANG Haofan, CAO Yonghai, YU Hao, PENG Feng. Progress on electrosynthesis of dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5033-5042. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |