| [1] |
GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911.
|
| [2] |
张文涛. 三水醋酸钠基复合相变储热材料的制备与性能研究[D]. 包头: 内蒙古科技大学, 2022.
|
|
ZHANG Wentao. Study on preparation and performance of composite phase change materials based on sodium acetate trihydrate for thermal energy storage[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
|
| [3] |
YANG Haibin, BAO Xiaohua, CUI Hongzhi, et al. Optimization of supercooling, thermal conductivity, photothermal conversion, and phase change temperature of sodium acetate trihydrate for thermal energy storage applications[J]. Energy, 2022, 254: 124280.
|
| [4] |
SHEN Zhenghui, KWON Soojin, LEE Hak Lae, et al. Enhanced thermal energy storage performance of salt hydrate phase change material: Effect of cellulose nanofibril and graphene nanoplatelet[J]. Solar Energy Materials and Solar Cells, 2021, 225: 111028.
|
| [5] |
XIAO Qiangqiang, CAO Jiahao, ZHANG Yixue, et al. The application of solar-to-thermal conversion phase change material in novel solar water heating system[J]. Solar Energy, 2020, 199: 484-490.
|
| [6] |
黄文荻, 周国兵, 曹保鑫. 石墨烯/三水醋酸钠复合相变材料界面热阻的分子动力学模拟[J]. 化工进展, 2024, 43(12): 6820-6827.
|
|
HUANG Wendi, ZHOU Guobing, CAO Baoxin. Molecular dynamics simulation of interface thermal resistance of graphene/sodium acetate trihydrate composite phase change material[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6820-6827..
|
| [7] |
万炜涛, 潘晨, 郭呈毅, 等. 导热复合材料降低填料之间界面热阻研究进展[J]. 高分子材料科学与工程, 2024, 40(5): 170-180.
|
|
WAN Weitao, PAN Chen, GUO Chengyi, et al. Progress in decreasing the thermal interfacial resistance between fillers for thermally conductive composites[J]. Polymer Materials Science & Engineering, 2024, 40(5): 170-180.
|
| [8] |
王子扬, 孙方远, 冯妍卉. 界面导热对铜/金刚石复合材料热导率的影响分析[J]. 工程热物理学报, 2023, 44(9): 2514-2520.
|
|
WANG Ziyang, SUN Fangyuan, FENG Yanhui. Influence of interfacial thermal conductance on thermal conductivity of copper/diamond composites[J]. Journal of Engineering Thermophysics, 2023, 44(9): 2514-2520.
|
| [9] |
吴晨光, 李蓓. 石墨烯取向影响石墨烯/硝酸盐复合材料传热性能的分子动力学模拟[J]. 复合材料学报, 2022, 39(5): 2495-2503.
|
|
WU Chenguang, LI Bei. Effect of graphene orientation on heat transfer properties of graphene/nitrates composites by molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2495-2503.
|
| [10] |
刘东静, 周福, 胡志亮, 等. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究[J]. 物理学报, 2024, 73(13): 333-341.
|
|
LIU Dongjing, ZHOU Fu, HU Zhiliang, et al. Molecular dynamics study of interfacial thermal transport properties of graphene/GaN heterostructure[J]. Acta Physica Sinica, 2024, 73(13): 333-341.
|
| [11] |
刘东静, 胡志亮, 周福, 等. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究[J]. 物理学报, 2024, 73(15): 15-24.
|
|
LIU Dongjing, HU Zhiliang, ZHOU Fu, et al. Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation[J]. Acta Physica Sinica, 2024, 73(15): 15-24.
|
| [12] |
CAMERON T S, MANNAN K M, RAHMAN M O. The crystal structure of sodium acetate trihydrate[J]. Acta Crystallographica Section B, 1976, 32(1): 87-90.
|
| [13] |
PLIMPTON Steve. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
|
| [14] |
THOMPSON Aidan P, Metin AKTULGA H, BERGER Richard, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171.
|
| [15] |
STUKOWSKI Alexander. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012.
|
| [16] |
LIANG Fei, DING Jing, WEI Xiaolan, et al. Interfacial heat and mass transfer at silica/binary molten salt interface from deep potential molecular dynamics[J]. International Journal of Heat and Mass Transfer, 2023, 217: 124705.
|
| [17] |
DEMONTIS Pierfranco, FOIS Ettore S, SUFFRITTI Giuseppe B, et al. Molecular dynamics studies on zeolites. 4. Diffusion of methane in silicalite[J]. The Journal of Physical Chemistry, 1990, 94(10): 4329-4334.
|
| [18] |
LEHERTE L, LIE G C, SWAMY K N, et al. Determination of the self-diffusion coefficient of water in ferrierite by molecular dynamics[J]. Chemical Physics Letters, 1988, 145(3): 237-241.
|
| [19] |
CUI Liu, FENG Yanhui, ZHANG Xinxin. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules[J]. Physical Chemistry Chemical Physics, 2015, 17(41): 27520-27526.
|
| [20] |
KONG Lingti. Phonon dispersion measured directly from molecular dynamics simulations[J]. Computer Physics Communications, 2011, 182(10): 2201-2207.
|
| [21] |
李文琛, 蔡一凡, 严泰森, 等. 三水合醋酸钠/膨胀石墨复合相变材料的制备及其储热性能[J]. 上海交通大学学报, 2020, 54(10): 1015-1023.
|
|
LI Wenchen, CAI Yifan, YAN Taisen, et al. Preparation and thermal storage properties of sodium acetate trihydrate-expanded graphite as phase change composite[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1015-1023.
|
| [22] |
尹国超, 刘军祥, 于庆波, 等. 三水乙酸钠复合相变材料的制备与热性能研究[J]. 储能科学与技术, 2023, 12(12): 3643-3654.
|
|
YIN Guochao, LIU Junxiang, YU Qingbo, et al. Preparation and properties of composite phase-change materials with sodium acetate trihydrate[J]. Energy Storage Science and Technology, 2023, 12(12): 3643-3654.
|
| [23] |
ARAKI N, FUTAMURA M, MAKINO A, et al. Measurements of thermophysical properties of sodium acetate hydrate[J]. International Journal of Thermophysics, 1995, 16(6): 1455-1466.
|
| [24] |
ROGERSON Mansel A, CARDOSO Silvana S S. Solidification in heat packs: I. Nucleation rate[J]. AIChE Journal, 2003, 49(2): 505-515.
|
| [25] |
STOCKERL R, KOHLER H-H. Dynamic investigations of the slow recrystallization of incongruently melting Glauber salt[J]. Solar Energy, 1991, 46(3): 167-173.
|
| [26] |
TAHANI Masoud, POSTEK Eligiusz, MOTEVALIZADEH Leili, et al. Effect of vacancy defect content on the interdiffusion of cubic and hexagonal SiC/Al interfaces: A molecular dynamics study[J]. Molecules, 2023, 28(2): 744.
|
| [27] |
NIKA D L, POKATILOV E P, ASKEROV A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering[J]. Physical Review B, 2009, 79(15): 155413.
|