Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 6963-6977.DOI: 10.16085/j.issn.1000-6613.2024-1814
• Materials science and technology • Previous Articles
MA Tinghong(
), HU Wenmei, XU Wei, LI Yuting, WANG Xingyan, CHEN Shan(
)
Received:2024-11-07
Revised:2024-12-31
Online:2026-01-06
Published:2025-12-25
Contact:
CHEN Shan
马廷鸿(
), 胡文梅, 徐薇, 李宇亭, 王星燕, 陈山(
)
通讯作者:
陈山
作者简介:马廷鸿(2000—),男,硕士研究生,研究方向为多糖基纳米材料的制备与应用。E-mail:mth820@163.com。
基金资助:CLC Number:
MA Tinghong, HU Wenmei, XU Wei, LI Yuting, WANG Xingyan, CHEN Shan. Research progress on green synthesis and application of polysaccharide-based silver nanoparticles materials[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6963-6977.
马廷鸿, 胡文梅, 徐薇, 李宇亭, 王星燕, 陈山. 多糖基纳米银材料的绿色合成及应用研究进展[J]. 化工进展, 2025, 44(12): 6963-6977.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1814
| 多糖 | 稳定机制 | 效果 | 参考文献 |
|---|---|---|---|
| 黄岑多糖 | 羟基氢键吸附 | 尺寸从51.18nm缩小至11.18nm,zeta电位从-4.07mV变为-23.05mV,pH=5~14和0~80℃范围内颜色和紫外光谱稳定,储存30天 | [ |
| 羧基静电吸引 | |||
| 羧甲基壳聚糖 | 羟基氢键吸附 | 尺寸20nm,稳定至少90天 | [ |
| 氨基氢键吸附 | |||
| 羧基静电吸引 | |||
| 核桃壳多糖 | 羟基Ag—O配位键 | 尺寸15.87nm,负载量达19.81%,20天仅释放2×10-7 | [ |
| 羧基化凝胶多糖 | 羧基静电吸引 | 尺寸15nm,zeta电位 -20mV,稳定至少3个月 | [ |
| 果胶 | 羧基静电吸引 | 尺寸12.8nm,颜色及紫外光谱稳定性能保持5年 | [ |
| 透明质酸 | 羧基静电吸引 | 尺寸120nm,zeta电位 -22.92mV,稳定至少49天 | [ |
| 果胶 | 固定化 | 12nm尺寸的纳米银均匀分布在凝胶中 | [ |
| 琼脂糖和海藻酸钙 | 固定化 | 固定于海藻酸钙凝胶表面的纳米银尺寸为31nm,均匀分布在琼脂糖凝胶中的纳米银尺寸为13nm | [ |
| 石莼多糖 | 固定化 | 凝胶中纳米银尺寸在13.87~21.55nm间,zeta电位 -24.5mV | [ |
| 多糖 | 稳定机制 | 效果 | 参考文献 |
|---|---|---|---|
| 黄岑多糖 | 羟基氢键吸附 | 尺寸从51.18nm缩小至11.18nm,zeta电位从-4.07mV变为-23.05mV,pH=5~14和0~80℃范围内颜色和紫外光谱稳定,储存30天 | [ |
| 羧基静电吸引 | |||
| 羧甲基壳聚糖 | 羟基氢键吸附 | 尺寸20nm,稳定至少90天 | [ |
| 氨基氢键吸附 | |||
| 羧基静电吸引 | |||
| 核桃壳多糖 | 羟基Ag—O配位键 | 尺寸15.87nm,负载量达19.81%,20天仅释放2×10-7 | [ |
| 羧基化凝胶多糖 | 羧基静电吸引 | 尺寸15nm,zeta电位 -20mV,稳定至少3个月 | [ |
| 果胶 | 羧基静电吸引 | 尺寸12.8nm,颜色及紫外光谱稳定性能保持5年 | [ |
| 透明质酸 | 羧基静电吸引 | 尺寸120nm,zeta电位 -22.92mV,稳定至少49天 | [ |
| 果胶 | 固定化 | 12nm尺寸的纳米银均匀分布在凝胶中 | [ |
| 琼脂糖和海藻酸钙 | 固定化 | 固定于海藻酸钙凝胶表面的纳米银尺寸为31nm,均匀分布在琼脂糖凝胶中的纳米银尺寸为13nm | [ |
| 石莼多糖 | 固定化 | 凝胶中纳米银尺寸在13.87~21.55nm间,zeta电位 -24.5mV | [ |
| 方法 | 机制 | 不足 | 参考文献 |
|---|---|---|---|
| 碱性条件 | 断裂糖苷键,产生更多还原片段;转化多糖形式 | 需净化产物溶液 | [ |
| 微波辐射 | 快速和均匀加热,快速提高反应速率 | 提高反应设备要求 | [ |
| 光照射 | 提供能量,促进电子转移还原银离子 | 反应时间较长 | [ |
| 改性 | 引入还原基团,改善多糖性质 | 增加合成反应物和步骤 | [ |
| 方法 | 机制 | 不足 | 参考文献 |
|---|---|---|---|
| 碱性条件 | 断裂糖苷键,产生更多还原片段;转化多糖形式 | 需净化产物溶液 | [ |
| 微波辐射 | 快速和均匀加热,快速提高反应速率 | 提高反应设备要求 | [ |
| 光照射 | 提供能量,促进电子转移还原银离子 | 反应时间较长 | [ |
| 改性 | 引入还原基团,改善多糖性质 | 增加合成反应物和步骤 | [ |
| 因素 | 影响 | 参考文献 |
|---|---|---|
| 多糖链构象 | 保持构象则使纳米银有更好的稳定性和性质 | [ |
| 破坏构象则导致纳米银聚集和沉淀 | ||
| 多糖分子量 | 过低则导致还原性能和稳定性能的缺失 | [ |
| 过高则由于黏性和沉降性导致纳米银沉淀 | [ | |
| 多糖浓度 | 直接影响还原和稳定效果,影响形状和尺寸 | [ |
| 碱性条件 | 将银盐和还原剂转为反应中间体,促进反应进行 | [ |
| 银盐浓度 | 过高则导致产量过大,多糖稳定效果不足 | [ |
| 温度和时间 | 长时高温导致碰撞概率增大,出现聚集和沉淀 | [ |
| 超声 | 促进反应发生的同时利于分散纳米银 | [ |
| 因素 | 影响 | 参考文献 |
|---|---|---|
| 多糖链构象 | 保持构象则使纳米银有更好的稳定性和性质 | [ |
| 破坏构象则导致纳米银聚集和沉淀 | ||
| 多糖分子量 | 过低则导致还原性能和稳定性能的缺失 | [ |
| 过高则由于黏性和沉降性导致纳米银沉淀 | [ | |
| 多糖浓度 | 直接影响还原和稳定效果,影响形状和尺寸 | [ |
| 碱性条件 | 将银盐和还原剂转为反应中间体,促进反应进行 | [ |
| 银盐浓度 | 过高则导致产量过大,多糖稳定效果不足 | [ |
| 温度和时间 | 长时高温导致碰撞概率增大,出现聚集和沉淀 | [ |
| 超声 | 促进反应发生的同时利于分散纳米银 | [ |
| 多糖 | 纳米银作用 | 材料性能 | 食品 | 应用效果 | 参考文献 |
|---|---|---|---|---|---|
| 卡拉胶 | 改善机械性能、抗菌 | 阻隔性好、强度高、抗菌、可降解 | 干酪和草莓 | 减少成分流失,保持食品风味 | [ |
| 壳聚糖 | 促进多糖形成非共价键 | 光滑、规则、致密、毒性低 | 草莓 | 保持形状和颜色,减少成分流失 | [ |
| 壳聚糖 | 抗氧化、抗菌 | 抗氧化、抗菌、阻隔性好、可降解 | 苹果切片 | 防止褐变,减少成分流失 | [ |
| 果胶 | 抗菌、抗氧化 | 抗氧化、抗菌、pH响应变色 | 虾 | 保存食品,检测新鲜度 | [ |
| 普鲁兰 | 抗氧化 | 抗氧化 | 鸡肉 | 延缓氧化酸败 | [ |
| 大豆多糖 | 抗菌、抗氧化、热稳定 | 抗菌、抗氧化、疏水、阻隔性好 | 鸡肉和猪肉 | 抑制细菌生长 | [ |
| 纳米纤维素 | 抗菌、阻隔紫外线 | 热稳定、强度高、阻隔性好、生物相容 | 牛奶 | 保持状态和气味,无明显微生物群落 | [ |
| 多糖 | 纳米银作用 | 材料性能 | 食品 | 应用效果 | 参考文献 |
|---|---|---|---|---|---|
| 卡拉胶 | 改善机械性能、抗菌 | 阻隔性好、强度高、抗菌、可降解 | 干酪和草莓 | 减少成分流失,保持食品风味 | [ |
| 壳聚糖 | 促进多糖形成非共价键 | 光滑、规则、致密、毒性低 | 草莓 | 保持形状和颜色,减少成分流失 | [ |
| 壳聚糖 | 抗氧化、抗菌 | 抗氧化、抗菌、阻隔性好、可降解 | 苹果切片 | 防止褐变,减少成分流失 | [ |
| 果胶 | 抗菌、抗氧化 | 抗氧化、抗菌、pH响应变色 | 虾 | 保存食品,检测新鲜度 | [ |
| 普鲁兰 | 抗氧化 | 抗氧化 | 鸡肉 | 延缓氧化酸败 | [ |
| 大豆多糖 | 抗菌、抗氧化、热稳定 | 抗菌、抗氧化、疏水、阻隔性好 | 鸡肉和猪肉 | 抑制细菌生长 | [ |
| 纳米纤维素 | 抗菌、阻隔紫外线 | 热稳定、强度高、阻隔性好、生物相容 | 牛奶 | 保持状态和气味,无明显微生物群落 | [ |
| [1] | WALI Ashwini, GORAIN Mahadeo, KUNDU Gopal, et al. Silver nanoparticles in electrospun ethyl hydroxy ethyl cellulose-PVA nanofiber: Synthesis, characterization and wound dressing applications[J]. Carbohydrate Polymer Technologies and Applications, 2024, 7: 100477. |
| [2] | THIEN Tran Vinh, Thanh-Truc VO, LE Van-Dung, et al. Impact of α-, β-, γ-cyclodextrins on recyclable catalytic reduction of silver nanoparticles loaded on cyclodextrin/alginate[J]. Journal of Organometallic Chemistry, 2024, 1013: 123161. |
| [3] | HILEUSKAYA Kseniya, LADUTSKA Alena, KULIKOUSKAYA Viktoryia, et al. ‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124141. |
| [4] | THEPBANDIT Wannaporn, PAPATHOTI Narendra Kumar, HOANG Nguyen Huy, et al. Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease[J]. Scientific Reports, 2024, 14(1): 12535. |
| [5] | MOHAN Sneha, OLUWAFEMI Oluwatobi S, SONGCA Sandile P, et al. Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles[J]. Journal of Molecular Liquids, 2016, 213: 75-81. |
| [6] | WEN Yutong, XUE Chunlong, JI Deluo, et al. Green construction of self-floating polysaccharide-based hydrogels with catalytic activity for efficient organic pollutants reduction[J]. International Journal of Biological Macromolecules, 2024, 271: 132507. |
| [7] | Lesli ORTEGA-ARROYO, MARTIN-MARTINEZ Eduardo San, AGUILAR-MENDEZ Miguel A, et al. Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response[J]. Starch-Stärke, 2013, 65(9/10): 814-821. |
| [8] | WANG Ruonan, LI Rongyu, ZHENG Peng, et al. Silver nanoparticles modified with polygonatum sibiricum polysaccharide improve biocompatibility and infected wound bacteriostasis[J]. Journal of Microbiology, 2023, 61(5): 543-558. |
| [9] | HAMOUDA Ragaa A, MAKHARITA Rabab R, QARABAI Fauzia A K, et al. Antibacterial activities of Ag/cellulose nanocomposites derived from marine environment algae against bacterial tooth decay[J]. Microorganisms, 2023, 12(1): 1. |
| [10] | XU Xindong, WANG Qing, XUE Siya, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers, 2021, 259: 117775. |
| [11] | XU Xindong, PAN Yuxue, LIU Xiaoying, et al. Constructing selenium nanoparticles with enhanced storage stability and antioxidant activities via conformational transition of curdlan[J]. Foods, 2023, 12(3): 563. |
| [12] | CAI Liqin, ZHANG Lina, XU Xiaojuan. One-step synthesis of ultra-small silver nanoparticles-loaded triple-helix β-glucan nanocomposite for highly catalytic hydrogenation of 4-nitrophenol and dyes[J]. Chemical Engineering Journal, 2022, 442: 136114. |
| [13] | MENG Yan, ZHANG Hui, HU Na, et al. Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities[J]. International Journal of Biological Macromolecules, 2021, 182: 1170-1178. |
| [14] | JIA Xuewei, YAO Yanchao, YU Guofeng, et al. Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity[J]. Carbohydrate Polymers, 2020, 238: 116169. |
| [15] | LI Sheng, ZHANG Yangyang, XU Xiaojuan, et al. Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water[J]. Biomacromolecules, 2011, 12(8): 2864-2871. |
| [16] | ABDEL-MOHSEN A M, ABDEL-RAHMAN Rasha M, FOUDA Moustafa M G, et al. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite[J]. Carbohydrate Polymers, 2014, 102: 238-245. |
| [17] | WU Chaoxi, WANG Xiaoying, CHU Bin, et al. Self-assembly of core-corona β-glucan into stiff and metalizable nanostructures from 1D to 3D[J]. ACS Nano, 2018, 12(10): 10545-10553. |
| [18] | AL-MUHANNA Muhanna K A, HILEUSKAYA K S, KULIKOUSKAYA V I, et al. Preparation of stable sols of silver nanoparticles in aqueous pectin solutions and properties of the sols[J]. Colloid Journal, 2015, 77(6): 677-684. |
| [19] | BUCCIOL Fabio, MANZOLI Maela, ZHANG Chao, et al. Ultrasound-driven deposition of Au and Ag nanoparticles on citrus pectin: Preparation and characterisation of antimicrobial composites[J]. ChemPlusChem, 2024, 89(7): e202300774. |
| [20] | TORDI Pietro, GELLI Rita, RIDI Francesca, et al. A bioinspired and sustainable route for the preparation of Ag-crosslinked alginate fibers decorated with silver nanoparticles[J]. Carbohydrate Polymers, 2024, 326: 121586. |
| [21] | LIN Jianxing, SATHIYASEELAN Anbazhagan, ZHANG Xin, et al. Utilization of xanthan gum-silver nitroprusside nanoparticles for prospective advancements in bacteriostasis and wound healing[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2024, 34(9): 4133-4145. |
| [22] | PATEL Miraj, KIKANI Twara, SAREN Ukil, et al. Bactericidal, anti-biofilm, anti-oxidant potency and catalytic property of silver nanoparticles embedded into functionalised chitosan gel[J]. International Journal of Biological Macromolecules, 2024, 262: 129968. |
| [23] | LIN Mengting, LONG Haiyue, LIANG Minting, et al. Antifracture, antibacterial, and anti-inflammatory hydrogels consisting of silver-embedded curdlan nanofibrils[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 36747-36756. |
| [24] | Rodrigo ARAYA-HERMOSILLA, Jessica MARTÍNEZ, LOYOLA César Zúñiga, et al. Fast and easy synthesis of silver, copper, and bimetallic nanoparticles on cellulose paper assisted by ultrasound[J]. Ultrasonics Sonochemistry, 2023, 99: 106545. |
| [25] | RIVA Laura, DOTTI Anna, IUCCI Giovanna, et al. Silver nanoparticles supported onto TEMPO-oxidized cellulose nanofibers for promoting Cd2+ cation adsorption[J]. ACS Applied Nano Materials, 2024, 7(2): 2401-2413. |
| [26] | YAN Yucheng, LI Guofeng, SU Mingming, et al. Scutellaria baicalensis polysaccharide-mediated green synthesis of smaller silver nanoparticles with enhanced antimicrobial and antibiofilm activity[J]. ACS Applied Materials & Interfaces, 2024, 16(34): 45289-45306. |
| [27] | DENG Yongfu, LUO Shuwen, LI Jianfang, et al. In situ ultrafast construction of polysaccharide-based Janus hydrogel films by asymmetric cross-linking for on-demand sterilization[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(29): 10905-10918. |
| [28] | WANG Guoliang, YANG Xi, CHEN Xiangru, et al. Construction and antibacterial activities of walnut green husk polysaccharide based silver nanoparticles (AgNPs)[J]. International Journal of Biological Macromolecules, 2024, 276: 133798. |
| [29] | ZHANG Yunlai, ZHANG Yan, JIAN Mengqi, et al. Sustained-release, antibacterial, adhesive gelatin composite hydrogel with AgNPs double-capped with curdlan derivatives[J]. International Journal of Biological Macromolecules, 2024, 277: 134222. |
| [30] | NIGOGHOSSIAN Karina, DOS SANTOS Molíria V, BARUD Hernane S, et al. Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids[J]. Applied Surface Science, 2015, 341: 28-36. |
| [31] | ANTUNES Débora R, FORINI Mariana M L H, COQUEIRO Yasmin A, et al. Effect of hyaluronic acid-stabilized silver nanoparticles on lettuce (Lactuca sativa L.) seed germination[J]. Chemosphere, 2024, 364: 143080. |
| [32] | HUANG Rui, HUANG Xuanxuan, ZHANG Qian, et al. Humidity-responsive pectin/AgNPs/ZnO composite films with high antimicrobial and UV-proof functions[J]. International Journal of Biological Macromolecules, 2024, 279: 135075. |
| [33] | GAZIL Olivier, ALONSO CERRÓN-INFANTES D, VIRGILIO Nick, et al. Hydrothermal synthesis of metal nanoparticles@hydrogels and statistical evaluation of reaction conditions’ effects on nanoparticle morphologies[J]. Nanoscale, 2024, 16(38): 17778-17792. |
| [34] | SULASTRI Evi, LESMANA Ronny, ZUBAIR Muhammad Sulaiman, et al. Ulvan/Silver nanoparticle hydrogel films for burn wound dressing[J]. Heliyon, 2023, 9(7): e18044. |
| [35] | WU Xiaodong, LU Canhui, ZHOU Zehang, et al. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environmental Science: Nano, 2014, 1(1): 71-79. |
| [36] | HASHMI Syeda Safia, IBRAHIM Muhammad, ADNAN Muhammad, et al. Green synthesis of silver nanoparticles from Olea europaea L. extracted polysaccharides, characterization, and its assessment as an antimicrobial agent against multiple pathogenic microbes[J]. Open Chemistry, 2024, 22(1): 20240016. |
| [37] | LI Hongfu, PAN Zhangchao, CHEN Jiaoman, et al. Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities[J]. International Journal of Biological Macromolecules, 2024, 254: 127579. |
| [38] | YANG Xiaoqian, NIU Yun, FAN Yingrun, et al. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging[J]. International Journal of Biological Macromolecules, 2024, 269: 131928. |
| [39] | XIAO Suijun, LAO Yufei, LIU Hongbo, et al. A nanocomposite hydrogel loaded with Ag nanoparticles reduced by Aloe vera polysaccharides as an antimicrobial multifunctional sensor[J]. International Journal of Biological Macromolecules, 2024, 267: 131541. |
| [40] | NAGARAJA Kasula, Tae Hwan OH. Green synthesis of carbohydrate polymer based gum kondagogu/hydroxypropyl cellulose blend silver nanocomposite film and their antimicrobial activity[J]. Journal of Polymers and the Environment, 2024, 32(9): 4525-4537. |
| [41] | FAID Amna H, ABDEL RAFEA M, Sara GAD, et al. Antitumor efficiency and photostability of newly green synthesized silver/graphene oxide nanocomposite on different cancer cell lines[J]. Cancer Nanotechnology, 2024, 15(1): 17. |
| [42] | CHEN Xushan, ZHANG Huimin, YANG Xin, et al. Preparation and application of quaternized chitosan- and AgNPs-base synergistic antibacterial hydrogel for burn wound healing[J]. Molecules, 2021, 26(13): 4037. |
| [43] | ALSALEM Huda S, BUKHARI Abeer Abdulaziz H. Biodegradable wound dressing-based collagen/hyaluronic acid loaded antibacterial agents for wound healing application[J]. International Journal of Biological Macromolecules, 2023, 242: 124700. |
| [44] | STOIAN Marius, KUNCSER Andrei, NEATU Florentina, et al. Green synthesis of aminated hyaluronic acid-based silver nanoparticles on modified titanium dioxide surface: Influence of size and chemical composition on their biological properties[J]. International Journal of Biological Macromolecules, 2023, 253: 127445. |
| [45] | DEL PILAR RODRIGUEZ-TORRES María, DÍAZ-TORRES Luis Armando, MILLÁN-CHIU Blanca E, et al. Antifungal and cytotoxic evaluation of photochemically synthesized heparin-coated gold and silver nanoparticles[J]. Molecules, 2020, 25(12): 2849. |
| [46] | YUAN Weiyong, FU Jinhong, SU Kai, et al. Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2010, 76(2): 549-555. |
| [47] | SHAO Ying, WU Chunhua, WU Tiantian, et al. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity[J]. International Journal of Biological Macromolecules, 2018, 111: 1281-1292. |
| [48] | QIU Wenyi, WANG Kai, WANG Yaoyao, et al. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions[J]. International Journal of Biological Macromolecules, 2018, 106: 498-506. |
| [49] | EL-NAGGAR Mehrez E, SHAHEEN Tharwat I, FOUDA Moustafa M G, et al. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles[J]. Carbohydrate Polymers, 2016, 136: 1128-1136. |
| [50] | RAO Sneha S, SAPTAMI K, VENKATESAN Jayachandran, et al. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity[J]. International Journal of Biological Macromolecules, 2020, 163: 745-755. |
| [51] | PENG Hong, YANG Anshu, XIONG Jianghua. Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium[J]. Carbohydrate Polymers, 2013, 91(1): 348-355. |
| [52] | WU Juan, ZHANG Fei, ZHANG Hongbin. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS[J]. Carbohydrate Polymers, 2012, 90(1): 261-269. |
| [53] | EL-SHERBINY Gamal M, ABOU EL-NOUR Salwa A, ASKAR Ahmed A, et al. Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent[J]. Bioprocess and Biosystems Engineering, 2022, 45(2): 257-268. |
| [54] | BISCARI Giuseppina, MALKOCH Michael, FIORICA Calogero, et al. Gellan gum-dopamine mediated in situ synthesis of silver nanoparticles and development of nano/micro-composite injectable hydrogel with antimicrobial activity[J]. International Journal of Biological Macromolecules, 2024, 258: 128766. |
| [55] | BUNYATOVA Ulviye, HAMMOUDA Manel BEN, ZHANG Jennifer Y. Preparation of injectable hydrophilic dextran/AgNPs nanocomposite product: White light active biomolecules as an antitumor agent[J]. International Journal of Biological Macromolecules, 2023, 245: 125215. |
| [56] | MARTORANA Annalisa, LENZUNI Martina, CONTARDI Marco, et al. Schiff base-based hydrogel embedded with In situ generated silver nanoparticles capped by a hyaluronic acid-diethylenetriamine derivative for wound healing application[J]. ACS Applied Materials & Interfaces, 2024, 16(16): 20186-20201. |
| [57] | BATOOL Sadaf, HUSSAIN Zakir, NIAZI Muhammad Bilal Khan, et al. Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application[J]. Journal of Drug Delivery Science and Technology, 2019, 52: 403-414. |
| [58] | JIA Xuewei, XU Xiaojuan, ZHANG Lina. Synthesis and stabilization of gold nanoparticles induced by denaturation and renaturation of triple helical β-glucan in water[J]. Biomacromolecules, 2013, 14(6): 1787-1794. |
| [59] | ARANAZ I, NAVARRO-GARCÍA F, MORRI M, et al. Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity[J]. International Journal of Biological Macromolecules, 2023, 235: 123849. |
| [60] | YANG Xingyun, WU Jianyong. Synthetic conditions, physical properties, and antibacterial activities of silver nanoparticles with exopolysaccharides of a medicinal fungus[J]. Materials, 2022, 15(16): 5620. |
| [61] | FERRERES Guillem, Sílvia PÉREZ-RAFAEL, Juan TORRENT-BURGUÉS, et al. Hyaluronic acid derivative molecular weight-dependent synthesis and antimicrobial effect of hybrid silver nanoparticles[J]. International Journal of Molecular Sciences, 2021, 22(24): 13428. |
| [62] | MARTÍNEZ-RODRÍGUEZ M A, MADLA-CRUZ E, URRUTIA-BACA V H, et al. Influence of polysaccharides' molecular structure on the antibacterial activity and cytotoxicity of green synthesized composites based on silver nanoparticles and carboxymethyl-cellulose[J]. Nanomaterials, 2020, 10(6): 1164. |
| [63] | MEHER Mukesh Kumar, POLURI Krishna Mohan. Anticoagulation and antibacterial properties of heparinized nanosilver with different morphologies[J]. Carbohydrate Polymers, 2021, 266: 118124. |
| [64] | KHAN Zaheer, SINGH Taruna, HUSSAIN Javed Ijaz, et al. Starch-directed green synthesis, characterization and morphology of silver nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2013, 102: 578-584. |
| [65] | BALACHANDRAN Y L, PANARIN A Y, KHODASEVICH I A, et al. Environmentally friendly preparation of gold and silver nanoparticles for sers applications using biopolymer pectin[J]. Journal of Applied Spectroscopy, 2015, 81(6): 962-968. |
| [66] | DEVASVARAN Kogilavanee, ALALLAM Batoul, YUNUS Muhammad Amir, et al. Microwave-assisted green synthesis of silver nanoparticles using alkaline extracted crude polysaccharide of C. nutans: Optimisation, characterisation, toxicity, anticancer potential and antibacterial studies[J]. Journal of Drug Delivery Science and Technology, 2023, 86: 104688. |
| [67] | NISHIMURA Shun, MOTT Derrick, TAKAGAKI Atsushi, et al. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent[J]. Physical Chemistry Chemical Physics, 2011, 13(20): 9335-9343. |
| [68] | Dominik MARŠÍK, THORESEN Petter Paulsen, Olga MAŤÁTKOVÁ, et al. Synthesis and characterization of lignin-silver nanoparticles[J]. Molecules, 2024, 29(10): 2360. |
| [69] | AHMAD N, ANG B C, AMALINA M A, et al. Influence of precursor concentration and temperature on the formation of nanosilver in chemical reduction method[J]. Sains Malaysiana, 2018, 47(1): 157-168. |
| [70] | SWENSSON Beatrice, Monica EK, GRAY Derek G. In situ preparation of silver nanoparticles in paper by reduction with alkaline glucose solutions[J]. ACS Omega, 2018, 3(8): 9449-9452. |
| [71] | MUGHAL Hania Feroz, KHAN Ghazanfar Ali, SHAFIQ Muhammad, et al. Facile room-temperature synthesis of cetyltrimethylammonium bromide (CTAB) coated spherical silver nanoparticles and their surface-enhanced Raman scattering (SERS) and antibacterial applications[J]. Chemical Papers, 2024, 78(6): 4019-4027. |
| [72] | Adrián GIL-KORILIS, COJOCARU Mihail, BERZOSA Melibea, et al. Comparison of antibacterial activity and cytotoxicity of silver nanoparticles and silver-loaded montmorillonite and saponite[J]. Applied Clay Science, 2023, 240: 106968. |
| [73] | JANAH Indah Miftakhul, ROTO Roto, SISWANTA Dwi. Effect of ascorbic acid concentration on the stability of tartrate-capped silver nanoparticles[J]. Indonesian Journal of Chemistry, 2022, 22(1): 857. |
| [74] | SARKAR Jit, NASKAR Arghya, NATH Anirban, et al. Innovative utilization of harvested mushroom substrate for green synthesis of silver nanoparticles: A multi-response optimization approach[J]. Environmental Research, 2024, 248: 118297. |
| [75] | MANIKANDAN Velu, MIN Sea C. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review[J]. International Journal of Biological Macromolecules, 2023, 252: 126381. |
| [76] | Akbar ALI, BAIRAGI Satyaranjan, GANIE Showkat ALI, et al. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review[J]. International Journal of Biological Macromolecules, 2023, 252: 126534. |
| [77] | KUMARI Shilpa, KUMARI Asha, SHARMA Rahul. Safe and sustainable food packaging: Argemone albiflora mediated green synthesized silver-carrageenan nanocomposite films[J]. International Journal of Biological Macromolecules, 2024, 264: 130626. |
| [78] | ORTEGA F, MINNAARD J, ARCE V B, et al. Nanocomposite starch films: Cytotoxicity studies and their application as cheese packaging[J]. Food Bioscience, 2023, 53: 102562. |
| [79] | MOUZAHIM M EL, EDDARAI E M, ELADAOUI S, et al. Effect of Kaolin clay and Ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation[J]. Food Chemistry, 2023, 410: 135470. |
| [80] | PONNUSAMY Arunachalasivamani, S R Radhika RAJASREE, RAJAN Roopa, et al. Chitosan silver nanoparticle inspired seaweed (Gracilaria crassa) biodegradable films for seafood packaging[J]. Algal Research, 2024, 78: 103429. |
| [81] | LI Shuying, WEI Nan, WEI Jia, et al. Curcumin and silver nanoparticles loaded antibacterial multifunctional pectin/gelatin films for food packaging applications[J]. International Journal of Biological Macromolecules, 2024, 266: 131248. |
| [82] | KHAN Muhammad Jamshed, RAMIAH Suriya Kumari, SELAMAT Jinap, et al. Utilisation of pullulan active packaging incorporated with curcumin and pullulan mediated silver nanoparticles to maintain the quality and shelf life of broiler meat[J]. Italian Journal of Animal Science, 2022, 21(1): 244-262. |
| [83] | MA Zhengxin, XING Zeyuan, ZHAO Yao, et al. Lotus leaf inspired sustainable and multifunctional Janus film for food packaging[J]. Chemical Engineering Journal, 2023, 457: 141279. |
| [84] | YANG Dan, FAN Bo, SUN Guangting, et al. Ultraviolet blocking ability, antioxidant and antibacterial properties of newly prepared polyvinyl alcohol-nanocellulose-silver nanoparticles-ChunJian peel extract composite film[J]. International Journal of Biological Macromolecules, 2023, 252: 126427. |
| [85] | TIAN Xiaoliang, YAN Weizhou, LIU Bin, et al. Fabrication of long-range film of flower-like Ag nanoparticles for highly sensitive SERS substrate[J]. Plasmonics, 2024: 1-8. |
| [86] | PARMIGIANI Miriam, SCHIFANO Veronica, TAGLIETTI Angelo, et al. Increasing gold nanostars SERS response with silver shells: A surface-based seed-growth approach[J]. Nanotechnology, 2024, 35(19): 195603. |
| [87] | WANG Haonan, CHEN Yujia, YANG Yixuan, et al. Preparation of cellulose-based flexible SERS and its application for rapid and ultra-sensitive detection of thiram on fruits and vegetables[J]. International Journal of Biological Macromolecules, 2024, 262: 129941. |
| [88] | DENG Yuanxi, YANG Ningning. Silver nanoparticle-embedded hydrogels for electrochemical sensing of sulfamethoxazole residues in meat[J]. Molecules, 2024, 29(6): 1256. |
| [89] | ETTADILI F E, AGHRIS S, LAGHRIB F, et al. Electrochemical detection of ornidazole in commercial milk and water samples using an electrode based on green synthesis of silver nanoparticles using cellulose separated from Phoenix dactylifera seed[J]. International Journal of Biological Macromolecules, 2023, 242: 124995. |
| [90] | BILAL Sehrish, SALEEM Shaifa, AKHTAR Naeem, et al. A novel cellulosic non-enzymatic nanosensor based on carbon shell silver (Ag@C) nanoparticles for colorimetric detection of chlorpyrifos in agricultural products[J]. JSFA Reports, 2022, 2(10): 511-523. |
| [91] | LI Ruyu, HE Mengmeng, CUI Yanshuai, et al. Silver-palladium bimetallic nanoparticles stabilized by elm pod polysaccharide with peroxidase-like properties for glutathione detection and photothermal anti-tumor ability[J]. International Journal of Biological Macromolecules, 2024, 264: 130673. |
| [92] | KUMAR Mohit, MAHMOOD Syed, CHOPRA Shruti, et al. Biopolymer based nanoparticles and their therapeutic potential in wound healing—A review[J]. International Journal of Biological Macromolecules, 2024, 267(Pt 2): 131335. |
| [93] | MOHAN Syam, Pranay WAL, PATHAK Kamla, et al. Nanosilver-functionalized polysaccharides as a platform for wound dressing[J]. Environmental Science and Pollution Research International, 2023, 30(19): 54385-54406. |
| [94] | YANG Anle, SUN Shibin, QU Lianyi, et al. Polysaccharide hydrogel containing silver nanoparticle@catechol microspheres with photothermal, antibacterial and anti-inflammatory activities for infected-wounds repair[J]. International Journal of Biological Macromolecules, 2024, 265: 130898. |
| [95] | AHMED Omnia, SIBUYI Nicole Remaliah Samantha, FADAKA Adewale Oluwaseun, et al. Plant extract-synthesized silver nanoparticles for application in dental therapy[J]. Pharmaceutics, 2022, 14(2): 380. |
| [96] | YIN Iris Xiaoxue, ZHAO Irene Shuping, MEI May Lei, et al. Use of silver nanomaterials for caries prevention: A concise review[J]. International Journal of Nanomedicine, 2020, 15: 3181-3191. |
| [97] | XU Grace Y, ZHAO Irene S, LUNG Christie Y K, et al. Silver compounds for caries management[J]. International Dental Journal, 2024, 74(2): 179-186. |
| [98] | WEI Hanchen, YANG Caiyun, BI Feihu, et al. Structure-controllable and mass-produced glycopolymersomes as a template of the carbohydrate@Ag nanobiohybrid with inherent antibacteria and biofilm eradication[J]. Biomacromolecules, 2024, 25(1): 315-327. |
| [99] | YIN Iris Xiaoxue, YU Ollie Yiru, ZHAO Irene Shuping, et al. Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use[J]. Archives of Oral Biology, 2019, 102: 106-112. |
| [100] | DOS SANTOS JUNIOR Valdeci Elias, TARGINO Andrea Gadelha Ribeiro, FLORES Miguel Angel Pelagio, et al. Antimicrobial activity of silver nanoparticle colloids of different sizes and shapes against Streptococcus mutans[J]. Research on Chemical Intermediates, 2017, 43(10): 5889-5899. |
| [101] | ELTANANY Rasha MA, FARAAG Ahmed H I, EBRAHIM Hassan Y, et al. Chemical composition of Spheciospongia aff. Mastoidea sponge from the red sea and uses of its polysaccharides in the biosynthesis of silver nanoparticles with antimicrobial and anticancer activity[J]. Thalassas: An International Journal of Marine Sciences, 2024, 40(1): 659-668. |
| [102] | Syama HP, Unnikrishnan BS, SREEKUTTY J, et al. Bio fabrication of galactomannan capped silver nanoparticles to apprehend Ehrlich ascites carcinoma solid tumor in mice[J]. Journal of Drug Delivery Science and Technology, 2022, 76: 103649. |
| [103] | EL-MELIGY Mahmoud A, EL-MONAEM Eman M ABD, ELTAWEIL Abdelazeem S, et al. Recent advancements in metallic Au- and Ag-based chitosan nanocomposite derivatives for enhanced anticancer drug delivery[J]. Molecules, 2024, 29(10): 2393. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [3] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [4] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [5] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [6] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [7] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [8] | WANG Guochao, DING Huidian, SHI Li, LI Qiang, XIA Tao, YUAN Yang. Temperature inferential control of compound distillation sequences [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4720-4731. |
| [9] | LI Yanping, YANG Tao, WANG Hongxun, ZHANG Cheng, WEN Guosheng, HAN Zhicheng, LAN Gongjia, YAN Dazhou. Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4322-4330. |
| [10] | CHEN Yang, LUO Jin, WANG Dianlin, YANG Zuguo, YANG Peng, CHEN Yong, ZHONG Xiang, TANG Li. Experimental study on the effect of surfactant complex systems with different molecular structures on emulsification and viscosity reduction of extra-heavy oil [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3838-3849. |
| [11] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [12] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [13] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [14] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [15] | MAO Yuanhao, FAN Huifeng, SAYD Sultan, FANG Furong, ZHONG Qi, YU Yunsong, WU Xiaomei, ZHANG Zaoxiao. Research progress in the electrochemically mediated amine regeneration CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4089-4100. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |