| [1] |
Methanol Institute. Renewable Methanol[EB/OL]. (2024-11-01) [2024-11-01]. .
|
| [2] |
陈科宇, 徐金鑫, 吴桂波, 等. 绿氨产业现状及发展展望[J]. 化工进展, 2024, 43(5): 2544-2553.
|
|
CHEN Keyu, XU Jinxin, WU Guibo, et al. Current situation and development prospect of green ammonia industry[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553.
|
| [3] |
IEA. Hydrogen Production and Infrastructure Projects Database[EB/OL]. (2024-10-02) [2024-11-01]. .
|
| [4] |
HUANG Zhen, ZHU Lei, LI Ang, et al. Renewable synthetic fuel: Turning carbon dioxide back into fuel[J]. Frontiers in Energy, 2022, 16(2): 145-149.
|
| [5] |
ZANG Guiyan, SUN Pingping, YOO Eunji, et al. Synthetic methanol/Fischer-Tropsch fuel production capacity, cost, and carbon intensity utilizing CO2 from industrial and power plants in the United States[J]. Environmental Science & Technology, 2021, 55(11): 7595-7604.
|
| [6] |
Raktim SEN, GOEPPERT Alain, SURYA PRAKASH G K. Homogeneous hydrogenation of CO2 and CO to methanol: The renaissance of low-temperature catalysis in the context of the methanol economy[J]. Angewandte Chemie International Edition, 2022, 61(42): e202207278.
|
| [7] |
舒斌, 陈建宏, 熊健, 等. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478.
|
|
SHU Bin, CHEN Jianhong, XIONG Jian, et al. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478.
|
| [8] |
WANG Jianyang, ZHANG Guanghui, ZHU Jie, et al. CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development[J]. ACS Catalysis, 2021, 11(3): 1406-1423.
|
| [9] |
ZHANG Shunan, WU Zhaoxuan, LIU Xiufang, et al. A short review of recent advances in direct CO2 hydrogenation to alcohols[J]. Topics in Catalysis, 2021, 64(5): 371-394.
|
| [10] |
JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.
|
| [11] |
XIE Shaoqu, ZHANG Wanli, LAN Xingying, et al. CO2 reduction to methanol in the liquid phase: A review[J]. ChemSusChem, 2020, 13(23): 6141-6159.
|
| [12] |
王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317.
|
|
WANG Jijie, HAN Zhe, CHEN Siyu, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317.
|
| [13] |
Carbon Recycling International. A Proven Carbon Utilisation Solution[EB/OL]. (2024-10-01) [2024-11-01]. .
|
| [14] |
ZHONG Jiawei, YANG Xiaofeng, WU Zhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
|
| [15] |
Sunfire. Breakthrough for Power-to-X: Sunfire puts first co-electrolysis into operation and starts scaling [EB/OL]. (2019-01-15) [2024-11-01]. .
|
| [16] |
Sara NAVARRO-JAÉN, VIRGINIE Mirella, BONIN Julien, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579.
|
| [17] |
LIU Xinyan, LI Boquan, NI Bing, et al. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts[J]. Journal of Energy Chemistry, 2022, 64: 263-275.
|
| [18] |
ZHOU Lingxi, Ruitao LYU. Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols[J]. Journal of Energy Chemistry, 2022, 70: 310-331.
|
| [19] |
MACFARLANE Douglas R, CHEREPANOV Pavel V, CHOI Jaecheol, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205.
|
| [20] |
王明华. 不同应用场景下新能源制氢合成绿氨经济性分析[J]. 现代化工, 2023, 43(11): 1-4, 9.
|
|
WANG Minghua. Competitiveness analysis of green ammonia synthesis from new energy hydrogen production in different application scenarios[J]. Modern Chemical Industry, 2023, 43(11): 1-4, 9.
|
| [21] |
LI Yang, ZHANG Qi, MEI Zongwei, et al. Recent advances and perspective on electrochemical ammonia synthesis under ambient conditions[J]. Small Methods, 2021, 5(11): e2100460.
|
| [22] |
曾悦, 王月, 张学瑞, 等. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389.
|
|
ZENG Yue, WANG Yue, ZHANG Xuerui, et al. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389.
|
| [23] |
FU Xianbiao, ZHANG Jiahao, KANG Yijin. Recent advances and challenges of electrochemical ammonia synthesis[J]. Chem Catalysis, 2022, 2(10): 2590-2613.
|
| [24] |
SHEN Huidong, CHOI Changhyeok, MASA Justus, et al. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754.
|
| [25] |
WANG Mingli, MA Jingkang, SHANG Zhoutai, et al. Advances in ambient selective electrohydrogenation of nitrogen to ammonia: Strategies to strengthen nitrogen chemisorption[J]. Journal of Materials Chemistry A, 2023, 11(8): 3871-3887.
|
| [26] |
REN Yongwen, YU Chang, TAN Xinyi, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(3): 1176-1193.
|
| [27] |
QING Geletu, GHAZFAR Reza, JACKOWSKI Shane T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia[J]. Chemical Reviews, 2020, 120(12): 5437-5516.
|
| [28] |
OUYANG Ling, LIANG Jie, LUO Yongsong, et al. Recent advances in electrocatalytic ammonia synthesis[J]. Chinese Journal of Catalysis, 2023, 50: 6-44.
|
| [29] |
ZHAO Xue, HU Guangzhi, CHEN Gaofeng, et al. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction[J]. Advanced Materials, 2021, 33(33): 2007650.
|
| [30] |
FU Xianbiao. Lithium-mediated nitrogen reduction for electrochemical ammonia synthesis: From batch to flow reactor[J]. Materials Today Catalysis, 2023, 3: 100031.
|
| [31] |
IQBAL Muhammad Saqlain, RUAN Yukun, IFTIKHAR Ramsha, et al. Lithium-mediated electrochemical dinitrogen reduction reaction[J]. Industrial Chemistry & Materials, 2023, 1(4): 563-581.
|
| [32] |
JIN Haneul, KIM Suyeon S, VENKATESHALU Sandhya, et al. Electrochemical nitrogen fixation for green ammonia: Recent progress and challenges[J]. Advanced Science, 2023, 10(23): 2300951.
|
| [33] |
LI Bowen, ZHU Yinlong, GUO Wanlin. Recent advances of metal oxide catalysts for electrochemical NH3 production from nitrogen-containing sources[J]. Inorganic Chemistry Frontiers, 2023, 10(20): 5812-5838.
|
| [34] |
LI Laiquan, TANG Cheng, JIN Huanyu, et al. Main-group elements boost electrochemical nitrogen fixation[J]. Chem, 2021, 7(12): 3232-3255.
|
| [35] |
LONG Jun, CHEN Shiming, ZHANG Yunlong, et al. Direct electrochemical ammonia synthesis from nitric oxide[J]. Angewandte Chemie International Edition, 2020, 59(24): 9711-9718.
|
| [36] |
Pirnie Malcolm. Evaluation of the fate and transport of methanol in the environment[EB/OL]. (2016-06-01) [2024-11-01]. .
|
| [37] |
PARRIS Dimitrios, SPINTHIROPOULOS K, RAGAZOU Konstantina, et al. Methanol, a plugin marine fuel for green house gas reduction—A review[J]. Energies, 2024, 17(3): 605.
|
| [38] |
DNV. Methanol as a potential alternative fuel for shipping: A brief talk with Chris Chatterton of the Methanol Institute [EB/OL]. (2020-05-01) [2024-11-01]. .
|
| [39] |
DIAS Véronique, POCHET Maxime, CONTINO Francesco, et al. Energy and economic costs of chemical storage[J]. Frontiers in Mechanical Engineering, 2020, 6: 21.
|
| [40] |
IEA. The Role of E-fuels in Decarbonising Transport [EB/OL]. (2023-12-22) [2024-11-01]. .
|
| [41] |
American Bureau of Shipping. Methanol as marine fuel [EB/OL]. (2021-02-01) [2024-11-01]. .
|