Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5515-5531.DOI: 10.16085/j.issn.1000-6613.2024-1419
• Chemical processes and equipment • Previous Articles
QI Jianlei1(
), ZHOU Dan2, YU Wen3, XU Qinqin4, YIN Jianzhong4(
)
Received:2024-08-30
Revised:2025-01-15
Online:2025-11-10
Published:2025-10-25
Contact:
YIN Jianzhong
祁建磊1(
), 周丹2, 喻文3, 徐琴琴4, 银建中4(
)
通讯作者:
银建中
作者简介:祁建磊(1990—),男,博士,讲师,研究方向为超临界二氧化碳应用及树脂基复合材料。E-mail:jlqi@imut.edu.cn。
基金资助:CLC Number:
QI Jianlei, ZHOU Dan, YU Wen, XU Qinqin, YIN Jianzhong. Application and development of supercritical fluid technology under the "dual carbon" background[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5515-5531.
祁建磊, 周丹, 喻文, 徐琴琴, 银建中. “双碳”背景下超临界流体技术应用与发展[J]. 化工进展, 2025, 44(10): 5515-5531.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1419
| [1] | YU Kunpeng, YIN Jianzhong. Heat transfer analysis of submerged combustion vaporizer under subcritical pressure and comparison with supercritical pressure[J]. Cryogenics, 2021, 120: 103372. |
| [2] | 韩布兴. 超临界流体科学与技术[M]. 北京: 中国石化出版社, 2005. |
| HAN Buxing. Supercritical fluid science & technology[M]. Beijing: China Petrochemical Press, 2005. | |
| [3] | ANDREWS Thomas. XVIII.The Bakerian Lecture.—On the continuity of the gaseous and liquid states of matter[J]. Philosophical Transactions of the Royal Society of London, 1869, 159: 575-590. |
| [4] | 朱自强. 超临界流体技术: 原理和应用[M]. 北京: 化学工业出版社, 2000. |
| ZHU Ziqiang. Supercritical fluid technology: Principle and application[M]. Beijing: Chemical Industry Press, 2000. | |
| [5] | YU Kunpeng, SUN Jianfei, YIN Jianzhong. Modeling and analysis of heat transfer in submerged combustion vaporizer under supercritical pressure[J]. Cryogenics, 2021, 116: 103287. |
| [6] | 乔国岳, 刘居陶, 孙剑飞, 等. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857. |
| QIAO Guoyue, LIU Jutao, SUN Jianfei, et al. Study on crystallization kinetics of supported nanoparticles controlled by desorption of supercritical carbon dioxide[J]. CIESC Journal, 2021, 72(11): 5849-5857. | |
| [7] | LIU Jutao, YIN Jianzhong. Carbon dioxide synergistic enhancement of supercritical methanol on PET depolymerization for chemical recovery[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 6813-6819. |
| [8] | HANNAY J B, HOGARTH James. Ⅰ. On the solubility of solids in gases[J]. Proceedings of the Royal Society of London, 1880, 30(200/201/202/203/204/205): 178-188. |
| [9] | HANNAY J B, HOGARTH James. Ⅵ. On the solubility of solids in gases[J]. Proceedings of the Royal Society of London, 1879, 29(196/197/198/199): 324-326. |
| [10] | ZOSEL Kurt. Process for recovering caffeine: US3806619[P]. 1974-04-23. |
| [11] | KOCH Daniel, LEITNER Walter. Rhodium-catalyzed hydroformylation in supercritical carbon dioxide[J]. Journal of the American Chemical Society, 1998, 120(51): 13398-13404. |
| [12] | RODRIGUES Alexsandra Pereira, Grazielle NÁTHIA-NEVES, PEREIRA Gustavo Araujo, et al. Obtaining high-quality oil from monguba (Pachira aquatica Aubl.) seeds by using supercritical CO2 process[J]. The Journal of Supercritical Fluids, 2021, 171: 105192. |
| [13] | KANDA Hideki, FUKUTA Yuji, Wahyudiono, et al. Enhancement of lipid extraction from soya bean by addition of dimethyl ether as entrainer into supercritical carbon dioxide[J]. Foods, 2021, 10(6): 1223. |
| [14] | 朱自强, 姚善泾, 韩兆熊. 超临界流体萃取开发中的若干问题[J]. 石油化工, 1986, 15(8): 512-518, 471. |
| ZHU Ziqiang, YAO Shanjing, HAN Zhaoxiong. Some problems in the development of supercritical fluid extraction[J]. Petrochemical Technology, 1986, 15(8): 512-518, 471. | |
| [15] | 朱自强. 超临界流体萃取中的相平衡进展[J]. 高校化学工程学报, 1994, 8(1): 1-10. |
| ZHU Ziqiang. Progress of phase equilibrium in the supercritical fluid extraction[J]. Journal of Chemical Engineering of Chinese Universities, 1994, 8(1): 1-10. | |
| [16] | 陈元, 杨基础. 超临界二氧化碳萃取亚麻籽油的研究[J]. 化学工程, 2003, 31(1): 22-25, 29-2. |
| CHEN Yuan, YANG Jichu. Studies on the supercritical carbon dioxide extraction of linseed oil[J]. Chemical Engineering (China), 2003, 31(1): 22-25, 29-2. | |
| [17] | 银建中, 毕明树, 孙献文, 等. 超临界CO2萃取沙棘油的实验研究及数值模拟[J]. 高校化学工程学报, 2001, 15(5): 481-484. |
| YIN Jianzhong, BI Mingshu, SUN Xianwen, et al. Experimental research and simulation of supercritical CO2 extraction of seed oils from hippophae rhamnoides L[J]. Journal of Chemical Engineering of Chinese Universities, 2001, 15(5): 481-484. | |
| [18] | 银建中, 修志龙, 毕明树, 等. “人工神经网络” 方法用于超临界流体萃取模拟[J]. 高校化学工程学报, 2002, 16(6): 691-695. |
| YIN Jianzhong, XIU Zhilong, BI Mingshu, et al. Simulations for supercritical fluid extraction by use of artificial neural networks[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 691-695. | |
| [19] | 杨鑫, 许红, 胡卫勋, 等. 基于超临界CO2萃取再生废润滑油[J]. 化工进展, 2023, 42(10): 5399-5405. |
| YANG Xin, XU Hong, HU Weixun, et al. Regeneration of waste lubricant oil by supercritical carbon dioxide extraction[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5399-5405. | |
| [20] | 束彤, 丁丽娜, 王茜, 等. 超高效液相色谱-质谱联用技术解析黑果枸杞超临界CO2萃取物中黄酮类天然产物结构[J]. 食品科学, 2020, 41(10): 206-212. |
| SHU Tong, DING Lina, WANG Qian, et al. Structural elucidation of flavonoids in the supercritical CO2 extract of black goji fruit by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry[J]. Food Science, 2020, 41(10): 206-212. | |
| [21] | 贾文龙, 宋硕硕, 李长俊, 等. 超临界CO2萃取含油污泥中原油的多相平衡模型[J]. 石油学报(石油加工), 2023, 39(3): 641-649. |
| JIA Wenlong, SONG Shuoshuo, LI Changjun, et al. A multiphase equilibrium model of supercritical CO2 extraction of crude oil in oily sludge[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(3): 641-649. | |
| [22] | 张宇杰, 郭红光, 李治刚, 等. 超临界CO2萃取提高褐煤生物甲烷产气模拟实验[J]. 煤炭学报, 2021, 46(10): 3278-3285. |
| ZHANG Yujie, GUO Hongguang, LI Zhigang, et al. Promoted microbial degradation of lignite by supercritical CO2 extraction to enhance coalbed methane production[J]. Journal of China Coal Society, 2021, 46(10): 3278-3285. | |
| [23] | WANG Junying, DING Weijing, ZHANG Bowei, et al. Polycyclic aromatic hydrocarbons dissolution in supercritical carbon dioxide by molecular dynamics simulation[J]. Journal of Molecular Liquids, 2023, 391: 123358. |
| [24] | KANG Jianhong, WAN Ru, ZHOU Fubao, et al. Effects of supercritical CO2 extraction on adsorption characteristics of methane on different types of coals[J]. Chemical Engineering Journal, 2020, 388: 123449. |
| [25] | WANG Lei, YANG Dong, MENG Qiaorong, et al. Effects of supercritical carbon dioxide under different conditions on mechanical properties and energy evolution of coal[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(3): 93. |
| [26] | SAIDMAN Laurence B, SMITH James C. Method for Forming Coating Material Formulations Substantially Comprised of a Saturated Resin Rich Phase: US5197800A[P]. 1993-03-30. |
| [27] | KAWASAKI Shin-ichiro, SAKURAI Yuko, FUJII Tatsuya. Study on atomization mechanism in spray coating of organic paint mixed with high-pressure carbon dioxide as a diluting solvent[J]. The Journal of Supercritical Fluids, 2022, 179: 105408. |
| [28] | 林春绵. 超临界CO2在涂料及喷涂工艺中的应用[J]. 浙江工业大学学报, 1995, 23(3): 242-247. |
| LIN Chunmian. Supercritical carbon dioxide and its application in coating spray technology[J]. Journal of Zhejiang University of Technology, 1995, 23(3): 242-247. | |
| [29] | 李冬旭, 银建中. 过氯乙烯清漆超临界二氧化碳喷涂的研究[J]. 现代化工, 2020, 40(4): 129-132. |
| LI Dongxu, YIN Jianzhong. Supercritical carbon dioxide spraying with vinyl perchloride varnish[J]. Modern Chemical Industry, 2020, 40(4): 129-132. | |
| [30] | 李冬旭, 银建中. 超临界二氧化碳用于酚醛清漆喷涂的研究[J]. 应用科技, 2019, 46(6): 96-100. |
| LI Dongxu, YIN Jianzhong. Research of supercritical carbon dioxide assisted spraying of phenolic varnish[J]. Applied Science and Technology, 2019, 46(6): 96-100. | |
| [31] | 孙太林, 荣晶. 一种CO2超临界聚合物涂料储存缓冲装置: CN207734908U[P]. 2018-08-17. |
| SUN Tailin, RONG Jing. Storage buffer device is scribbled to overcritical polymer of CO2 : CN207734908U[P]. 2018-08-17. | |
| [32] | 孙太林, 陈宇星, 王洪川, 等. 一种CO2超临界聚合物涂料混合装置: CN207734937U[P]. 2018-08-17. |
| SUN Tailin, CHEN Yuxing, WANG Hongchuan, et al. Feed mixing device is scribbled to overcritical polymer of CO2 : CN207734937U[P]. 2018-08-17. | |
| [33] | 孙太林, 荣晶, 潘江波. 一种CO2超临界聚合物喷涂喷嘴: CN207695016U[P]. 2018-08-07. |
| SUN Tailin, RONG Jing, PAN Jiangbo. Overcritical polymer spraying nozzle of CO2 : CN207695016U[P]. 2018-08-07. | |
| [34] | ECKHARD Schollmeye, DIERK Knittel, GERHARD Schneider, et al. Dyeing Process for Textiles Using Dye-contg. Supercritical Fluid as Dyeing Liquor: DE3906724-A[P]. 1990-09-13 |
| [35] | BELTRAME Pier Luigi, CASTELLI Antonella, SELLI Elena, et al. Dyeing of cotton in supercritical carbon dioxide[J]. Dyes and Pigments, 1998, 39(4): 335-340. |
| [36] | Katarzyna SCHMIDT-PRZEWOZNA, Edward RÓJ. Green sustainable textile supercritical dyeing process using CO2 madder (Rubia tinctorum L.) extract[J]. Journal of Natural Fibers, 2023, 20(2): 2277836. |
| [37] | 瞿德浩, 王威强, 孙发玉, 等. 超临界流体染色及其装备研究(一)[J]. 印染, 2019, 45(13): 47-51. |
| QU Dehao, WANG Weiqiang, SUN Fayu, et al. Research of the supercritical fluid dyeing and its devices(Ⅰ)[J]. Dyeing & Finishing, 2019, 45(13): 47-51. | |
| [38] | 瞿德浩, 王威强, 孙发玉, 等. 超临界流体染色及其装备研究(二)[J]. 印染, 2019, 45(14): 50-52. |
| QU Dehao, WANG Weiqiang, SUN Fayu, et al. Research of the supercritical fluid dyeing and its devices(Ⅱ)[J]. Dyeing & Finishing, 2019, 45(14): 50-52. | |
| [39] | 郑来久, 刘志伟, 季婷, 等. 超临界CO2染色技术[J]. 化学工程, 2006, 34(9): 71-74. |
| ZHENG Laijiu, LIU Zhiwei, JI Ting, et al. Technique of dyeing in supercritical CO2 [J]. Chemical Engineering, 2006, 34(9): 71-74. | |
| [40] | 葛怀富, 吴伟, 王健, 等. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(1): 120-127. |
| GE Huaifu, WU Wei, WANG Jian, et al. Application of methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate in supercritical carbon dioxide fluid dyeing with disperse dyes[J]. Journal of Textile Research, 2024, 45(1): 120-127. | |
| [41] | WANG Mingyue, LIU Mao, ZHAO Hongjuan, et al. Reactive modified curcumin for high-fastness nonaqueous SC-CO2 dyeing of cotton fabric[J]. Cellulose, 2020, 27(17): 10541-10551. |
| [42] | GONG Daixuan, JING Xiandong, ZHAO Yuping, et al. One-step supercritical CO2 color matching of polyester with dye mixtures[J]. Journal of CO2 Utilization, 2021, 44: 101396. |
| [43] | 洪雪丽, 焦芬, 刘维. 印染废水处理技术综述[J]. 中南大学学报(自然科学版), 2023, 54(4): 1219-1229. |
| HONG Xueli, JIAO Fen, LIU Wei. Review on dyeing wastewater treatment technology[J]. Journal of Central South University (Science and Technology), 2023, 54(4): 1219-1229. | |
| [44] | 薛罡. 印染废水治理技术进展[J]. 工业水处理, 2021, 41(9): 10-17. |
| XUE Gang. Technology progress of dyeing wastewater treatment[J]. Industrial Water Treatment, 2021, 41(9): 10-17. | |
| [45] | 张炜, 李惠军, 郑环达. 超临界CO2在纺织中的染色进程[J]. 上海纺织科技, 2019, 47(7): 5-9. |
| ZHANG Wei, LI Huijun, ZHENG Huanda. Dyeing process with supercritical CO2 in textiles[J]. Shanghai Textile Science & Technology, 2019, 47(7): 5-9. | |
| [46] | ABATE Molla Tadesse, ZHOU Yuyang, GUAN Jinping, et al. Colouration and bio-activation of polyester fabric with curcumin in supercritical CO2: Part Ⅱ-Effect of dye concentration on the colour and functional properties[J]. The Journal of Supercritical Fluids, 2020, 157: 104703. |
| [47] | BADMUS Kassim O, Elizabeth COETSEE-HUGO, SWART Hendrik, et al. Synthesis and characterisation of stable and efficient nano zero valent iron[J]. Environmental Science and Pollution Research,2018, 25(24): 23667-23684. |
| [48] | 孙长春, 王健, 刘延辉, 等. 超临界CO2无水染色涤纶长丝物化机械性能研究[J]. 纺织导报, 2020(3): 56-59. |
| SUN Changchun, WANG Jian, LIU Yanhui, et al. Study on physicochemical and mechanical properties of supercritical CO2 anhydrous dyeing of polyester filament[J]. China Textile Leader, 2020(3): 56-59. | |
| [49] | 蔡冲, 张聪, 文美莲, 等. 超临界CO2流体对芳纶1313专用染料染色性能的影响[J]. 毛纺科技, 2021, 49(3): 30-35. |
| CAI Chong, ZHANG Cong, WEN Meilian, et al. Influence of supercritical CO2 on the dyeing properties of special dyes for meta-aramid fiber[J]. Wool Textile Journal, 2021, 49(3): 30-35. | |
| [50] | 龙家杰, 陈锋, 魏晓晨, 等. 纺织品超临界CO2无水染色的产业化进程[J]. 染整技术, 2015, 37(8): 1-6. |
| LONG Jiajie, CHEN Feng, WEI Xiaochen, et al. Industrialization process of textile supercritical CO2 anhydrous dyeing[J]. Textile Dyeing and Finishing Journal, 2015, 37(8): 1-6. | |
| [51] | 李大平. 连续式超临界无水印染中试装置的开发研究[D]. 上海: 华东理工大学, 2014. |
| LI Daping. Development and research of continuous supercritical waterless printing and dyeing pilot plant[D]. Shanghai: East China University of Science and Technology, 2014. | |
| [52] | 高潮, 龙家杰, 崔芳 等. 超临界二氧化碳无水纤染中试产业化应用[R]. 山东高棉智能纤染科技有限公司, 2020-06-12. |
| GAO Chao, LONG Jiajie, CUI Fang, et al. The scCO2 anhydrous fiber dyeing pilot industrial application [R]. Shandong Gao Mian Intelligent Fiber Dyeing Technology Co., LTD., 2020-06-12. | |
| [53] | LI Min, PANG Xiongqi, XIONG Liang, et al. The main controlling factors on shale gas occurrence characteristics in deep and high-over mature shales: A case study of Silurian Longmaxi Formation in the Sichuan Basin, Southern China[J]. Energy Reports, 2022, 8: 6901-6913. |
| [54] | 卢义玉, 周军平, 鲜学福, 等. 超临界CO2强化页岩气开采及地质封存一体化研究进展与展望[J]. 天然气工业, 2021, 41(6): 60-73. |
| LU Yiyu, ZHOU Junping, XIAN Xuefu, et al. Research progress and prospect of the integrated supercritical CO2 enhanced shale gas recovery and geological sequestration[J]. Natural Gas Industry, 2021, 41(6): 60-73. | |
| [55] | TAN Jingqiang, HU Ruining, WANG Wenhui, et al. Palynological analysis of the late Ordovician-early Silurian black shales in South China provides new insights for the investigation of pore systems in shale gas reservoirs[J]. Marine and Petroleum Geology, 2020, 116: 104145. |
| [56] | 王海柱, 李根生, 郑永, 等. 超临界CO2压裂技术现状与展望[J]. 石油学报, 2020, 41(1): 116-126. |
| WANG Haizhu, LI Gensheng, ZHENG Yong, et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica, 2020, 41(1): 116-126. | |
| [57] | Qiao LYU, TAN Jingqiang, LI Lei, et al. The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs[J]. Energy & Environmental Science, 2021, 14(8): 4203-4227. |
| [58] | LI Sanbai, ZHANG Dongxiao. How effective is carbon dioxide as an alternative fracturing fluid?[J]. SPE Journal, 2019, 24(2): 857-876. |
| [59] | ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378. |
| [60] | SONG Xuehang, GUO Yintong, ZHANG Jin, et al. Fracturing with carbon dioxide: From microscopic mechanism to reservoir application[J]. Joule, 2019, 3(8): 1913-1926. |
| [61] | LU Yiyu, CHEN Xiayu, TANG Jiren, et al. Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation[J]. Energy, 2019, 172: 270-285. |
| [62] | TIAN Sen, BAI Ruyi, ZHAO Ying, et al. Molecular simulation and experimental study on adsorption effect of CH4/CO2 in shale minerals[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 818-832. |
| [63] | BUSCH Andreas, ALLES Sascha, GENSTERBLUM Yves, et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308. |
| [64] | LEVINE Jonathan S, FUKAI Isis, SOEDER Daniel J, et al. U.S. DOE NETL methodology for estimating the prospective CO2 storage resource of shales at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2016, 51: 81-94. |
| [65] | 张添锦, 王延峰, 李军, 等. 注CO2提高页岩吸附甲烷采收率核磁共振实验[J]. 特种油气藏, 2023, 30(5): 113-120. |
| ZHANG Tianjin, WANG Yanfeng, LI Jun, et al. Nuclear magnetic resonance experiment for enhanced recovery of adsorbed methane from shale through carbon dioxide injection[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 113-120. | |
| [66] | SUN Jingyue, CHEN Zherui, WANG Xi, et al. Displacement characteristics of CO2 to CH4 in heterogeneous surface slit pores[J]. Energy & Fuels, 2023, 37(4): 2926-2944. |
| [67] | 杨国栋, 黄冕, 刘思雨, 等. 超临界CO2强化页岩气开采技术研究现状及展望[J]. 现代化工, 2024, 44(3): 16-20. |
| YANG Guodong, HUANG Mian, LIU Siyu, et al. Research status and prospect of supercritical CO2 enhanced shale gas recovery[J]. Modern Chemical Industry, 2024, 44(3): 16-20. | |
| [68] | 赵玉龙, 黄义书, 张涛, 等. 页岩气藏超临界CO2压裂—提采—封存研究进展[J]. 天然气工业, 2023, 43(11): 109-119. |
| ZHAO Yulong, HUANG Yishu, ZHANG Tao, et al. Research progress on supercritical CO2 fracturing, enhanced gas recovery and storage in shale gas reservoirs[J]. Natural Gas Industry, 2023, 43(11): 109-119. | |
| [69] | 刘思哲, 周进, 王亮, 等. 超临界CO2强化开采页岩气技术研究进展[J]. 化学工程师, 2021, 35(9): 52-56. |
| LIU Sizhe, ZHOU Jin, WANG Liang, et al. Research progress of supercritical CO2 enhanced shale gas extraction technology[J]. Chemical Engineer, 2021, 35(9): 52-56. | |
| [70] | ZHANG Shuwen, SHEN Ziyi, HE Yan, et al. Pore structure alteration of shale with exposure to different fluids: The Longmaxi Formation shale in the Sichuan basin, China[J]. Minerals, 2023, 13(11): 1387. |
| [71] | TAO Lei, HAN Jian, FENG Yanjun, et al. Study on the alteration of pore parameters of shale with different natural fractures under supercritical carbon dioxide seepage[J]. Minerals, 2022, 12(6): 660. |
| [72] | 徐兴友, 刘卫彬, 陈珊, 等. 松辽盆地南部陆相页岩油气勘查突破及意义[J]. 天然气工业, 2022, 42(3): 12-20. |
| XU Xingyou, LIU Weibin, CHEN Shan, et al. Breakthroughs in continental shale oil and gas exploration in the southern Songliao Basin and its implications for carbon neutrality[J]. Natural Gas Industry, 2022, 42(3): 12-20. | |
| [73] | 延长石油网.延长石油: 页岩气超临界二氧化碳压裂获得成功[J]. 石油知识, 2017(6): 25. |
| Yanchang Petroleum Network.Yanchang petroleum: Shale gas supercritical carbon dioxide fracturing succeeded[J]. Petroleum Knowledge, 2017(6): 25. | |
| [74] | DOSTAL Vaclav, HEJZLAR Pavel, DRISCOLL Michael J. The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles[J]. Nuclear Technology, 2006, 154(3): 283-301. |
| [75] | Eduardo RUIZ-CASANOVA, Carlos RUBIO-MAYA, Jesús PACHECO-IBARRA J, et al. Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources[J]. Energy Conversion and Management, 2020, 216: 112978. |
| [76] | HU Lian, CHEN Deqi, GAO Shiqiu, et al. Thermodynamic and heat transfer analyses of the s-CO2 brayton cycle as the heat transport system of a nuclear reactor[J]. Heat Transfer Research, 2016, 47(10): 907-925. |
| [77] | BESARATI Saeb M, YOGI GOSWAMI D. Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications[J]. Journal of Solar Energy Engineering, 2014, 136: 010904. |
| [78] | GOU J L, ZHANG K L, MA C, et al. Numerical investigation on property effects in a low speed supercritical carbon dioxide centrifugal compressor[J]. IOP Conference Series: Earth and Environmental Science, 2019, 354(1): 012076. |
| [79] | CHAN Shining, YAO Lichao, FU Qingfei, et al. Wave rotor as a pressure exchanger for lower rotational speed and lower shaft work in a supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2023, 277: 116578. |
| [80] | KHATOON Saboora, ISHAQUE Shehryar, KIM Man-Hoe. Modeling and analysis of air-cooled heat exchanger integrated with supercritical carbon dioxide recompression Brayton cycle[J]. Energy Conversion and Management, 2021, 232: 113895. |
| [81] | Jae-Eun CHA, LEE Tae-Ho, Jae-Hyuk EOH, et al. Development of a supercritical CO2 brayton energy conversion system coupled with a sodium cooled fast reactor[J]. Nuclear Engineering and Technology, 2009, 41(8): 1025-1044. |
| [82] | LE MOULLEC Yann. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J]. Energy, 2013, 49: 32-46. |
| [83] | DENG Tianrui, ZHANG Lianjie, LI Na, et al. Study on supercritical carbon dioxide recompression Brayton cycle system integrated with thermoelectric generator[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102541. |
| [84] | 陈玮, 罗向龙, 梁颖宗, 等. 50MW超临界二氧化碳燃煤发电系统设计与参数分析[J]. 工程热物理学报, 2022, 43(7): 1824-1835. |
| CHEN Wei, LUO Xianglong, LIANG Yingzong, et al. System design and parametric analysis of 50MW supercritical carbon dioxide coal-fired power plant[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1824-1835. | |
| [85] | 陈璟, 陈磊, 周敬, 等. 1000MW超临界二氧化碳动力循环燃煤发电机组变工况特性研究[J]. 中国电机工程学报, 2023, 43(17): 6681-6688. |
| CHEN Jing, CHEN Lei, ZHOU Jing, et al. Research on the performance of 1000MW supercritical carbon dioxide power cycle coal-fired unit under off-design conditions[J]. Proceedings of the CSEE, 2023, 43(17): 6681-6688. | |
| [86] | PERSICHILLI Michael, HELD T, HOSTLER S, et al. Transforming waste heat to power through development of a CO2-based power cycle[J]. Electric Power Expo, 2011, 10: 12. |
| [87] | 伯克利国家实验室. 美国伯克利国家实验室开发CCS地热发电技术[J]. 地热能, 2012(1): 21. |
| Berkeley National Laboratory. CCS geothermal power technology is developed by Berkeley National Laboratory of America[J]. Geothermal Energy, 2012, 1:21 | |
| [88] | CLEMENTONI E, COX T. Practical aspects of supercritical carbon dioxide brayton system testing[C]//Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania. 2014, 2: 9-10. |
| [89] | MARION JOHN, MACADAM SCOTT, MCCLUNG AARON, et al. The STEP 10 MWe sCO2 pilot demonstration status update[C]//ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, June 13-17, 2022, Rotterdam, Netherlands. 2022 |
| [90] | 国家发展改革委, 工业和信息化部, 国家能源局. 中国制造2025——能源装备实施方案[J]. 中国产经, 2016(6): 66-93. |
| National development and reform commission, Ministry of industry and information technology, National energy administration. Made in China 2025-energy equipment implementation plan[J]. Chinese Industry & Economy, 2016(6): 66-93. | |
| [91] | 新工质发电团队.首座大型超临界二氧化碳压缩机实验平台投运[J]. 石油化工设计, 2018, 35(4): 67. |
| New working medium power generation team. The first large-scale supercritical carbon dioxide compressor experimental platform was put into operation[J]. Petrochemical Design, 2018, 35(4): 67. | |
| Design Petrochemical, 2018, 35(4): 67. | |
| [92] | 江增重工. 国内首台CO2透平压缩机发电机组成功交付[J]. 通用机械, 2020(5): 11. |
| Jiangzeng heavy Industries.The first domestic CO2 turbocompressor generator set was successfully delivered[J]. General Machinery, 2020(5): 11. | |
| [93] | 新工质发电团队.工程热物理所兆瓦级超临界二氧化碳压缩机测试成功[J]. 高科技与产业化, 2021, 27(4): 84. |
| New working medium power generation team. Successful test of MW supercritical carbon dioxide compressor in Institute of Engineering Thermophysics[J]. High-Technology & Commercialization, 2021, 27(4): 84. | |
| [94] | 华能集团. 世界参数最高容量最大超临界二氧化碳发电试验机组成功投运[J]. 水泵技术, 2021(6): 56. |
| CHINA Huaneng Group. The world’s largest supercritical carbon dioxide power generation test unit with the highest parameters and capacity was successfully put into operation[J]. Pump Technology, 2021(6): 56. | |
| [95] | MEYER Bernard H, KINSLOW Joseph C. Purification, impregnation and foaming of polymer particles with carbon dioxide: US5049328[P]. 1991-09-17. |
| [96] | MONTES Antonio, VALOR Diego, PENABAD Yaiza, et al. Formation of PLGA-PEDOT: PSS conductive scaffolds by supercritical foaming[J]. Materials, 2023, 16(6): 2441. |
| [97] | BRIAND Axel, LEYBROS Antoine, DOUCET Olivier, et al. Versatility assessment of supercritical CO2 delamination for photovoltaic modules with ethylene-vinyl acetate, polyolefin or ethylene methacrylic acid ionomer as encapsulating polymer[J]. Journal of Cleaner Production, 2023, 410: 137292. |
| [98] | LEE Chia-Wei, LIN Chia-Hsing, WANG Lyuying, et al. Developing sustainable and recyclable high-efficiency electromagnetic interference shielding nanocomposite foams from the upcycling of recycled poly(ethylene terephthalate)[J]. Chemical Engineering Journal, 2023, 468: 143447. |
| [99] | FABA Simón, ARRIETA Marina P, Ángel AGÜERO, et al. Processing compostable PLA/organoclay bionanocomposite foams by supercritical CO2 foaming for sustainable food packaging[J]. Polymers, 2022, 14(20): 4394. |
| [100] | 赵玲.国家重点研发计划 重点基础材料技术提升与产业化重点专项项目 聚合物材料的轻量化技术(2016YFB0302200)[J]. 中国塑料, 2017, 31(12): 106. |
| ZHAO Ling.Lightweight technology of polymer materials (2016YFB0302200), a key special project of national key R&D plan, key basic material technology upgrading and industrialization[J]. China Plastics, 2017, 31(12): 106. | |
| [101] | 吴申康, 汪扬烨, 朱伟林, 等. CO2在苯乙烯-丙烯腈聚合物中的溶解和扩散[J]. 塑料, 2016, 45(5): 45-48. |
| WU Shenkang, WANG Yangye, ZHU Weilin, et al. Solubility and diffusion coefficients of supercritical CO2 in SAN[J]. Plastics, 2016, 45(5): 45-48. | |
| [102] | 孟倩倩, 高长云, 冷秀江, 等. PP/TPU共混性能及超临界CO2发泡[J]. 塑料, 2017, 46(3): 59-61. |
| MENG Qianqian, GAO Changyun, LENG Xiujiang, et al. PP/TPU blend properties and supercritical CO2 foaming[J]. Plastics, 2017, 46(3): 59-61. | |
| [103] | 冯英健, 胡冬冬, 魏少龙, 等. 长链支化聚对苯二甲酸乙二醇酯的制备及其超临界CO2挤出发泡性能研究[J]. 中国塑料, 2023, 37(11): 1-9. |
| FENG Yingjian, HU Dongdong, WEI Shaolong, et al. Preparation of long-chain-branched poly(ethylene terephthalate) and its foaming properties by supercritical CO2 extrusion[J]. China Plastics, 2023, 37(11): 1-9. | |
| [104] | 陈壮鑫, 雷彩红, 薛南翔, 等. 发泡工艺对PLA/PBAT复合材料发泡结构的影响[J]. 塑料, 2022, 51(5): 102-107. |
| CHEN Zhuangxin, LEI Caihong, XUE Nanxiang, et al. Influence of foaming process on foaming effect of PLA/PBAT composite[J]. Plastics, 2022, 51(5): 102-107. | |
| [105] | 杨堃阳, 邵亮, 崔梦媛, 等. 从丝瓜络废料中提取纤维素纳米纤维及在聚乙烯醇超临界二氧化碳复合发泡材料中的应用[J]. 应用化工, 2024, 53(3): 525-529. |
| YANG Kunyang, SHAO Liang, CUI Mengyuan, et al. Extraction of cellulose nanofibers from waste of loofah and application in polyvinyl alcohol supercritical carbon dioxide composite foams[J]. Applied Chemical Industry, 2024, 53(3): 525-529. | |
| [106] | 徐兴家, 甄卫军, 赵玲. 超临界CO2发泡制备聚氯乙烯微孔材料研究进展[J]. 中国塑料, 2019, 33(7): 117-129. |
| XU Xingjia, ZHEN Weijun, ZHAO Ling. Research progress in preparation of microcellular PVC foamed with supercritical CO2 [J]. China Plastics, 2019, 33(7): 117-129. | |
| [107] | 何顺伦, 盛丽华, 郭洪武 等. 超临界二氧化碳挤出发泡聚丙烯珠粒[R]. 合肥会通中科材料有限公司, 2012-06-02. |
| HE Shunlun, SHENG Lihua, GUO Hongwu, et al. Supercritical carbon dioxide extrusion foam polypropylene beads [R]. Hefei Hui Tong Zhong Ke Materials Co., LTD., 2012-06-02. | |
| [108] | 高过, 张明友, 郭远来, 等. 微孔发泡技术应用研究进展[J]. 现代塑料加工应用, 2023, 35(3): 60-63. |
| GAO Guo, ZHANG Mingyou, GUO Yuanlai, et al. Research progress of application of microcellular foaming technology[J]. Modern Plastics Processing and Applications, 2023, 35(3): 60-63. | |
| [109] | QIAO Guoyue, XU Qinqin, WANG Aiqin, et al. Size-controlled synthesis of CuO nanoparticles by the supercritical antisolvent method in SBA-15[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 129-136. |
| [110] | QI Jianlei, XU Qinqin, ZHOU Dan, et al. Preparation of Cu single atoms on N-doped carbon materials with supercritical CO2 deposition[J]. The Journal of Supercritical Fluids, 2021, 171: 105202. |
| [111] | QI Jianlei, XU Qinqin, ZHOU Dan, et al. Synthesis of single-atom dispersed Co-NC catalytic materials in supercritical CO2 environment with inorganic salt precursor[J]. Journal of CO2 Utilization, 2022, 59: 101948. |
| [112] | QI Jianlei, ZHOU Dan, XU Qinqin, et al. Preparation of Pd-ZIF-8 single-atom catalyst with supercritical CO2 deposition method[J]. Microporous and Mesoporous Materials, 2022, 346: 112287. |
| [113] | KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127: 741. |
| [114] | GUDMUNDUR Gunnarsson. Supercritical drying of submicron ceramic ceramic powders esp. alumina and zirconia enables subsequent calcination to be effected without forming hard agglomerates: WO8908611A[P]. 1989.09.21. |
| [115] | 张洋, 孙国新, 陈志, 等. 沉淀法结合超临界CO2干燥制备纳米γ-Al2O3 [J]. 无机化学学报, 2009, 25(7): 1295-1298. |
| ZHANG Yang, SUN Guoxin, CHEN Zhi, et al. Chemical precipitation-supercritical CO2 drying for preparing nano γ-Al2O3 [J]. Chinese Journal of Inorganic Chemistry, 2009, 25(7): 1295-1298. | |
| [116] | Nisha RAI, CHAUHAN Indu. A review on polysaccharide based aerogel synthesis and their applications[J]. Polymer-Plastics Technology and Materials, 2024, 63(15): 2122-2140. |
| [117] | FITZPATRICK Sarah E, Santanu DEB-CHOUDHURY, RANFORD Steve, et al. Canola protein aerogels via salt-induced gelation and supercritical carbon dioxide drying[J]. European Polymer Journal, 2022, 168: 111126. |
| [118] | KAUR Sumanjot, UBEYITOGULLARI Ali. In vitro digestion of starch and protein aerogels generated from defatted rice bran via supercritical carbon dioxide drying[J]. Food Chemistry, 2024, 455: 139833. |
| [119] | BASAK Somnath, SINGHAL Rekha S. The potential of supercritical drying as a “green” method for the production of food-grade bioaerogels: A comprehensive critical review[J]. Food Hydrocolloids, 2023, 141: 108738. |
| [120] | 应标, 廖传华. 超临界CO2干燥过程能耗分析及节能优化[J]. 化学工程, 2023, 51(6): 1-6. |
| YING Biao, LIAO Chuanhua. Energy consumption analysis and energy saving optimization of supercritical CO2 drying process[J]. Chemical Engineering (China), 2023, 51(6): 1-6. | |
| [121] | 穆磊, 赵巨岩, 刘生东, 等. 超临界CO2流体干燥海洋出水木质文物的实验研究[J]. 文物保护与考古科学, 2020, 32(6): 55-60. |
| MU Lei, ZHAO Juyan, LIU Shengdong, et al. Experimental research on supercritical CO2 fluid drying for water-saturated wooden relics[J]. Sciences of Conservation and Archaeology, 2020, 32(6): 55-60. |
| [1] | LIU Kefeng, DONG Weigang, HU Xuesheng, LIU Taoran, ZHOU Huaqun, SHI Wen, WAN Zi’an, GAO Fei. Policies and measures to promote the development of CCUS [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4879-4897. |
| [2] | XUE Zijie, WU Yan, CUI Ziyuan, XU Guanxin, TANG Shuo, WANG Yufei, MA Mingyan. Long cycle green ammonia synthesis model based on economic analysis: Considering the impact of continuous changes in grid carbon emission factors [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4917-4927. |
| [3] | SUN Bin, DU Jianguo, WANG Lingbao, BU Xianbiao, GONG Yulie, LI Huashan. Optimization of working fluid for U-shaped well supercritical power generation system driven by hot dry rock [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4945-4953. |
| [4] | WU Zifeng, WANG Hongjuan, WANG Haofan, CAO Yonghai, YU Hao, PENG Feng. Progress on electrosynthesis of dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5033-5042. |
| [5] | LU Ling, YU Lei, GU Xia, LAI Minming, ZHOU Kai, WANG Yapeng, LI Xiang. Efficient thermocatalytic and resource utilization of pharmaceutical waste salt [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5432-5441. |
| [6] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [7] | YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668. |
| [8] | TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949. |
| [9] | YAO Ruwei, SONG Yueyin, NIU Qinqin, LI Congming. Na-S co-modified iron catalysts for CO2 hydrogenation to C2+ alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3154-3162. |
| [10] | GU Shengshen, GUO Meng, REN Xiuxiu, PAN Yang, JIN Dongliang, ZHONG Jing. Research progress of microporous organosilica membranes in CO2 separation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2846-2855. |
| [11] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [12] | SU Junjie, LIU Su, ZHOU Haibo, LIU Chang, ZHANG Lin, WANG Yangdong, XIE Zaiku. InZr/SAPO-34 bifunctional catalyst for direct production of light olefins from CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2870-2878. |
| [13] | ZHU Junying, RONG Junfeng, ZONG Baoning. Feasibility analysis of Spirulina carbon sequestration while producing of bulk feed protein [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2705-2715. |
| [14] | QIAO Jinliang. Feedstock substitution may assist petrochemical industry driving high-quality development in China [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2803-2805. |
| [15] | CHEN Aohui, SONG Yanfang, CHEN Wei, WEI Wei. Self-supported porous electrodes for efficient electrocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2806-2810. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |