Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5881-5890.DOI: 10.16085/j.issn.1000-6613.2024-1363
• Fine chemicals • Previous Articles
SUN Ailing(
), YANG Jianjun(
), WU Qingyun, WU Mingyuan, ZHANG Jian’an, LIU Jiuyi
Received:2024-08-20
Revised:2024-10-14
Online:2025-11-10
Published:2025-10-25
Contact:
YANG Jianjun
孙爱玲(
), 杨建军(
), 吴庆云, 吴明元, 张建安, 刘久逸
通讯作者:
杨建军
作者简介:孙爱玲(2000—),女,硕士研究生,研究方向为高分子复合材料。E-mail: 3519688176 @qq.com。
基金资助:CLC Number:
SUN Ailing, YANG Jianjun, WU Qingyun, WU Mingyuan, ZHANG Jian’an, LIU Jiuyi. Research progress of self-healing epoxy anti-corrosion coatings[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5881-5890.
孙爱玲, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 自修复环氧防腐涂层的研究进展[J]. 化工进展, 2025, 44(10): 5881-5890.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1363
| 样品 | 环氧树脂 EP/g | 3,3′-二硫代二丙酸 DTPA/g | 三苯基膦 TPP/g | 己二酸 ADA/g | 二聚酸 DAA/g | DAA与DTPA的 摩尔比 |
|---|---|---|---|---|---|---|
| EP-ADA-DAA | 4.00 | 0 | 0.13 | 0.74 | 1.12 | — |
| EP-SS | 4.00 | 1.47 | 0.13 | 0 | 0 | 0 |
| EP-SS-DAA1 | 4.00 | 1.26 | 0.13 | 0 | 0.56 | 0.17 |
| EP-SS-DAA2 | 4.00 | 1.05 | 0.13 | 0 | 1.12 | 0.40 |
| EP-SS-DAA3 | 4.00 | 0.82 | 0.13 | 0 | 1.74 | 0.80 |
| 样品 | 环氧树脂 EP/g | 3,3′-二硫代二丙酸 DTPA/g | 三苯基膦 TPP/g | 己二酸 ADA/g | 二聚酸 DAA/g | DAA与DTPA的 摩尔比 |
|---|---|---|---|---|---|---|
| EP-ADA-DAA | 4.00 | 0 | 0.13 | 0.74 | 1.12 | — |
| EP-SS | 4.00 | 1.47 | 0.13 | 0 | 0 | 0 |
| EP-SS-DAA1 | 4.00 | 1.26 | 0.13 | 0 | 0.56 | 0.17 |
| EP-SS-DAA2 | 4.00 | 1.05 | 0.13 | 0 | 1.12 | 0.40 |
| EP-SS-DAA3 | 4.00 | 0.82 | 0.13 | 0 | 1.74 | 0.80 |
| 样品 | 抗拉强度/MPa | 断裂伸长率/% | 杨氏模量/GPa | 韧性/MJ·m-3 |
|---|---|---|---|---|
| EP-SS | 56.15±1.12 | 8.18±1.33 | 2.34±0.04 | 4.02±0.11 |
| EP-SS-DAA1 | 37.47±0.85 | 91.40±4.58 | 2.06±0.02 | 32.28±0.57 |
| EP-SS-DAA2 | 35.85±0.92 | 150.55±5.81 | 1.86±0.03 | 42.14±0.42 |
| EP-SS-DAA3 | 18.01±0.67 | 178.45±4.97 | 1.31±0.02 | 28.23±0.53 |
| 样品 | 抗拉强度/MPa | 断裂伸长率/% | 杨氏模量/GPa | 韧性/MJ·m-3 |
|---|---|---|---|---|
| EP-SS | 56.15±1.12 | 8.18±1.33 | 2.34±0.04 | 4.02±0.11 |
| EP-SS-DAA1 | 37.47±0.85 | 91.40±4.58 | 2.06±0.02 | 32.28±0.57 |
| EP-SS-DAA2 | 35.85±0.92 | 150.55±5.81 | 1.86±0.03 | 42.14±0.42 |
| EP-SS-DAA3 | 18.01±0.67 | 178.45±4.97 | 1.31±0.02 | 28.23±0.53 |
| 样品 | SPE、CM-β-CD、CHCA、PEGBC摩尔比 |
|---|---|
| SCCPB-0 | 1∶1∶1∶0 |
| SCCPB-1 | 1∶1∶1∶1 |
| SCCPB-2 | 1∶1∶1∶2 |
| SCCPB-3 | 1∶1∶1∶3 |
| SCCPB-4 | 1∶1∶1∶4 |
| 样品 | SPE、CM-β-CD、CHCA、PEGBC摩尔比 |
|---|---|
| SCCPB-0 | 1∶1∶1∶0 |
| SCCPB-1 | 1∶1∶1∶1 |
| SCCPB-2 | 1∶1∶1∶2 |
| SCCPB-3 | 1∶1∶1∶3 |
| SCCPB-4 | 1∶1∶1∶4 |
| [1] | JIA Zhitong, FU Mingjiao, ZHAO Xiaodong, et al. Intelligent identification of metal corrosion based on corrosion-YOLOv5s[J]. Displays, 2023, 76: 102367. |
| [2] | 黄小庆, 杨建军, 陈春俊, 等. 功能型环氧树脂基防腐涂层的研究进展[J]. 精细化工, 2023, 40(8): 1625-1635, 1666. |
| HUANG Xiaoqing, YANG Jianjun, CHEN Chunjun, et al. Research progress on functional epoxy-based anti-corrosion coatings[J]. Fine Chemicals, 2023, 40(8): 1625-1635, 1666. | |
| [3] | LIN Xiuzhou, CHEN Xulei, ZHAO Shixiong, et al. Effect of silane-modified fluorinated graphene on the anticorrosion property of epoxy coating[J]. Journal of Applied Polymer Science, 2023, 140(12): e53637. |
| [4] | ZHANG Binbin, FAN Hao, XU Weichen, et al. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion[J]. Journal of Materials Research and Technology, 2022, 17: 2684-2689. |
| [5] | 孙军艳, 许瑶菲, 杨松伟, 等. 基于动态共价键自修复环氧树脂研究进展[J]. 广州化学, 2023, 48(6): 13-19, 79. |
| SUN Junyan, XU Yaofei, YANG Songwei, et al. Progress of self-healing epoxy resins based on dynamic covalent bonds[J]. Guangzhou Chemistry, 2023, 48(6): 13-19, 79. | |
| [6] | HE Shasha, GAO Yijian, GONG Xinghou, et al. Advance of design and application in self-healing anticorrosive coating: A review[J]. Journal of Coatings Technology and Research, 2023, 20(3): 819-841. |
| [7] | ZHANG Cheng, WANG Haoran, ZHOU Qixin. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent[J]. Progress in Organic Coatings, 2018, 125: 403-410. |
| [8] | LIU Tianhui, ZHAO Yuzeng, DENG Yining, et al. Preparation of fully epoxy resin microcapsules and their application in self-healing epoxy anti-corrosion coatings[J]. Progress in Organic Coatings, 2024, 188: 108247. |
| [9] | ZHANG He, CHENG Chuanrui, GUO Meiling. Fabrication of diisocyanate microcapsules for self-healing anti-corrosion coatings via integrating electrospraying and interfacial polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695: 134247. |
| [10] | YANG Kang, NIU Yongping, WANG Xiaowei, et al. Self-lubricating epoxy composite coating with linseed oil microcapsule self-healing functionality[J]. Journal of Applied Polymer Science, 2024, 141(6): e54927. |
| [11] | SAFDARI Alireza, KHORASANI Saied Nouri, NEISIANY Rasoul Esmaeely, et al. Corrosion resistance evaluation of self-healing epoxy coating based on dual-component capsules containing resin and curing agent[J]. International Journal of Polymer Science, 2021, 2021(1): 6617138. |
| [12] | GUO Maolian, LI Wei, HAN Na, et al. Novel dual-component microencapsulated hydrophobic amine and microencapsulated isocyanate used for self-healing anti-corrosion coating[J]. Polymers, 2018, 10(3): 319. |
| [13] | WANG Rui, YU Fei, FENG Hengyu, et al. Preparation of two-component micro-encapsulated epoxy self-healing materials based on Pickering emulsion method[J]. Journal of Applied Polymer Science, 2023, 140(35): e54350. |
| [14] | XU Yangbo, SHEN Rulin, TANG Juntao, et al. Optimizing mechanical properties and corrosion resistance in core-shell nanofiber epoxy self-healing coatings: Impact of shell material variation[J]. Polymer Engineering & Science, 2024, 64(4): 1770-1785. |
| [15] | XU Shuai, LI Jing, QIU Hanxun, et al. Repeated self-healing of composite coatings with core-shell fibres[J]. Composites Communications, 2020, 19: 220-225. |
| [16] | NAGA KUMAR C, PRABHAKAR M N, Song JUNG-IL. PVDF green nanofibers as potential carriers for improving self-healing and mechanical properties of carbon fiber/epoxy prepregs[J]. Nanotechnology Reviews, 2022, 11(1): 1890-1900. |
| [17] | LI Pengchong, SHANG Zhi, CUI Kejian, et al. Coaxial electrospinning core-shell fibers for self-healing scratch on coatings[J]. Chinese Chemical Letters, 2019, 30(1): 157-159. |
| [18] | WANG Ruzheng, CAO Lin, WANG Wei, et al. Construction of smart coatings containing core-shell nanofibers with self-healing and active corrosion protection[J]. ACS Applied Materials & Interfaces, 2024, 16(32): 42748-42761. |
| [19] | FU Xue, DU Wenbo, DOU Haixu, et al. Nanofiber composite coating with self-healing and active anticorrosive performances[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57880-57892. |
| [20] | HASSIM Mohamad Tarmizie, PRABHAKAR M N, SONG Jung-Il. Strengthening and self-healing of natural fiber composites via PLA core-shell nanofibers as healing agent carrier[J]. Polymer Composites, 2024, 45(10): 9350-9361. |
| [21] | HAO Yongsheng, ZHAO Yifan, YANG Xiaoxuan, et al. Self-healing epoxy coating loaded with phytic acid doped polyaniline nanofibers impregnated with benzotriazole for Q235 carbon steel[J]. Corrosion Science, 2019, 151: 175-189. |
| [22] | JI Xiaohong, JI Wenhui, POURHASHEM Sepideh, et al. Novel superhydrophobic core-shell fibers/epoxy coatings with self-healing anti-corrosion properties in both acidic and alkaline environments[J]. Reactive and Functional Polymers, 2023, 187: 105574. |
| [23] | WANG Qi, WANG Wei, JI Xiaohong, et al. Self-healing coatings containing core-shell nanofibers with pH-responsive performance[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3139-3152. |
| [24] | CAO Lin, WANG Qi, WANG Wei, et al. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 27168-27176. |
| [25] | ZHANG Yuanyuan, XING Jinjuan, TIAN Hu, et al. Smart nanoarchitectonics of epoxy coating: Preparation, release behavior and self-healing performance based on mesoporous silica nano-containers loaded with DMTD inhibitors[J]. Materials Today Communications, 2024, 39: 108673. |
| [26] | LI Xuejin, LI Long, ZHANG Weiqiang, et al. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131548. |
| [27] | LAMPRAKOU Zoi, BI Huichao, WEINELL Claus Erik, et al. Smart epoxy coating with mesoporous silica nanoparticles loaded with calcium phosphate for corrosion protection[J]. Progress in Organic Coatings, 2022, 165: 106740. |
| [28] | ZHU Ziwei, CHEN Sifan, ZHANG Yue, et al. Corrosion resistance of polyvinyl butyral/reduced graphene oxide/titanium dioxide composite coatings for stainless steel in different environments[J]. Progress in Organic Coatings, 2022, 173: 107226. |
| [29] | JIANG Li, DONG Yanmao, YUAN Yan, et al. Recent advances of metal-organic frameworks in corrosion protection: From synthesis to applications[J]. Chemical Engineering Journal, 2022, 430: 132823. |
| [30] | WEN Jiaxin, LEI Jinglei, CHEN Jinlong, et al. Polyethylenimine wrapped mesoporous silica loaded benzotriazole with high pH-sensitivity for assembling self-healing anti-corrosive coatings[J]. Materials Chemistry and Physics, 2020, 253: 123425. |
| [31] | LIU Liang, WANG Haifeng, ZHANG Chuanxu, et al. Improved anti-corrosion and self-healing performance of epoxy coatings reinforced by chitosan encapsulated mesoporous silica nanocontainers[J]. Materials Letters, 2024, 366: 136595. |
| [32] | ZHANG Zhenhua, CAO Yangyang, WAN Jieru, et al. Double-layered composite coating with enhanced self-healing and anti-corrosion performance based on synergistic effect of l-methionine and vanillin[J]. Progress in Organic Coatings, 2024, 192: 108477. |
| [33] | ALIYARI Donya, MAHDAVIAN Mohammad, RAMEZANZADEH Bahram. Zinc-cobalt bimetallic metal-organic framework (Zn/Co-MOF) nanoparticles as potent pH stimuli anti-corrosive agent for development of a self-healable epoxy composite coating[J]. Materials Today Chemistry, 2024, 38: 102105. |
| [34] | YAN Han, FAN Xiaoqiang, CAI Meng, et al. Amino-functionalized Ti3C2T x loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating[J]. Journal of Colloid and Interface Science, 2021, 602: 131-145. |
| [35] | SOLAIMANY Farnaz, RAMEZANZADEH Mohammad, HADDADI Seyyed Arash, et al. BTA@MoS2/hydroxyapatite/ZIF8 self-assembled nanohybrid for designing multi-functional smart anti-corrosion system[J]. Materials Today Chemistry, 2024, 37: 102012. |
| [36] | HU Zhen, ZHANG Dayu, LU Fei, et al. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions[J]. Macromolecules, 2018, 51(14): 5294-5303. |
| [37] | WANG Juntao, CHEN Dingding, XING Suli, et al. Highly thermal stable, stiff, and recyclable self-healing epoxy based on Diels-Alder reaction[J]. ACS Applied Polymer Materials, 2024, 6(1): 466-474. |
| [38] | CAO Ying, WANG Xiaoyu, WU Jianhua, et al. A novel self-healing and removable hexagonal boron nitride/epoxy coating with excellent anti-corrosive property based on Diels-Alder reaction[J]. Progress in Organic Coatings, 2022, 173: 107209. |
| [39] | ZHANG Yunpeng, YE Jiaofeng, QU Dongan, et al. Thermo-adjusted self-healing epoxy resins based on Diels-Alder dynamic chemical reaction[J]. Polymer Engineering & Science, 2021, 61(9): 2257-2266. |
| [40] | WEN Jie, WANG Lin, LI Rui, et al. Design and properties of dynamic self-healing polyurea molecule based on disulfide bonds[J]. Journal of Applied Polymer Science, 2023, 140(6): e53436. |
| [41] | WU Jianxin, LIU Xiaochun, CHEN Lijing, et al. Rapid self-healing and high-mechanical-strength epoxy resin coatings incorporating dynamic disulfide bonds[J]. ACS Applied Polymer Materials, 2024, 6(8): 4778-4788. |
| [42] | WANG Baolei, LI Zewei, LIU Xinru, et al. Preparation of epoxy resin with disulfide-containing curing agent and its application in self-healing coating[J]. Materials, 2023, 16(12): 4440. |
| [43] | LIU Tong, ZHAO Haichao, ZHANG Dawei, et al. Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection[J]. Corrosion Science, 2021, 187: 109485. |
| [44] | KIM Geonwoo, CAGLAYAN Cigdem, YUN GUN jin. Epoxy-based catalyst-free self-healing elastomers at room temperature employing aromatic disulfide and hydrogen bonds[J]. ACS Omega, 2022, 7(49): 44750-44761. |
| [45] | HONMA Yoshiyuki, SUGANE Kaito, SHIBATA Mitsuhiro. Self-healing photocured methacrylic resins utilizing host-guest interactions of cyclodextrin and adamantane[J]. European Polymer Journal, 2023, 196: 112244. |
| [46] | KURIHARA Risa, OGAWA Yamato, SUGANE Kaito, et al. Self-healing carboxylic acid-cured epoxy networks driven by the cyclodextrin-cyclohexane host-guest interaction[J]. Polymer Bulletin, 2024, 81(7): 6405-6421. |
| [47] | SUGANE Kaito, MARUOKA Yuji, SHIBATA Mitsuhiro. Self-healing epoxy networks based on cyclodextrin-adamantane host-guest interactions[J]. Journal of Polymer Research, 2021, 28(11): 423. |
| [1] | ZHANG Bo, MA Jun, ZHANG Weilong, JIA Shichuan, ZHANG Zhifei, DING Yu, PAN Youhua, WANG Junyu, ZHANG Lanhe. Preparation of α-ZrP/PDMS superhydrophobic anti-corrosion coating and corrosion resistance performance [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5130-5139. |
| [2] | ZUO Qibin, ZHANG Han, SUN Chuanfu, HU Guilin, XIA Yuzhen. Application of nickel/graphene coating on foam metal flow field of PEMFC [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5195-5201. |
| [3] | CHE Xinghao, LUO Chenhui, DUAN Dongquan, FENG Yajuan, CAO Junya, ZHANG Xianglan, XIE Qiang. Safety evaluation system and application of VOCs treatment engineering in industrial coating industry based on process simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4741-4753. |
| [4] | CHEN Qian, TONG Kun, XIE Jiacai, SHAO Zhiguo, NIE Fan, LI Chentao. Research progress on the treatment technology of polymer-containing oil sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4158-4168. |
| [5] | LI Qingsi, ZHANG Liming, ZHANG Lei. Research progress on anti-icing coatings and anti-icing application prospects of antifreeze proteins [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2505-2514. |
| [6] | CHEN Jiquan, REN Pengwei, ZHU Riguang, CHEN Sisi, TANG Xingying, QIN Xinyu, YANG Jianqiao. Corrosion of nickel-based alloys in supercritical water oxidation containing erosive ions: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2141-2155. |
| [7] | ZHAO Min, XU Jing, GUO Xingjian, CHEN Sheng, LI Pengjie, HE Meng. Research progress of nano-fillers in scale inhibition coatings [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2183-2195. |
| [8] | WANG Peigan, LI Leli, XIE Songzhuan, SONG Bingbing, KONG Qiaoping, LIU Gaige, MA Weiwei, SHI Xueqing. Phosphate adsorption mechanism of sludge-based FeCa-ALE composite material [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2365-2373. |
| [9] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [10] | SONG Ci, LI Haiyan, ZHANG Shizhen, LIU Hongwei, ZHANG Jianying, QIU Jiahao, CAO Renwei, SUN Kun, QIN Ying, ZHU Mingxu, GAO Mengyan. Types and application status of the self-repairing anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1466-1484. |
| [11] | XUE Bingfeng, ZHANG Ye, ZHANG Shiyuan, FU Peng, CUI Zhe, ZHANG Yuancheng, LI Xin, PANG Xinchang, ZHAO Wei, ZHANG Xiaomeng, LIU Minying. Preparation and characterization of polyamide PA12T by direct solid state polymerization [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1559-1569. |
| [12] | LI Honghui, LI Qingyun, LI Mei, FANG Yiyan, SHEN Huiting, LIN Hongfei. Biodegradation of typical refractory metal cyanide complexes: iron cyanide complexes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1163-1169. |
| [13] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
| [14] | ZHANG Aijing, WANG Zhenyu, XIAO Ningning, SONG Yanna, LI Jun, FENG Jiangtao, YAN Wei. Research progress on novel adsorption materials for mercury ion [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 899-913. |
| [15] | DING Wei, DU Wei, GUO Tiebin, GUAN Xiaozhuo, WANG Tiezheng, GAO Jiantong, ZHANG Nan, LI Da, ZHANG Lanhe. Preparation and anti-corrosion research of graphene oxide modified by L-glutamic acid composite epoxy resin coating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 424-435. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |