Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4039-4049.DOI: 10.16085/j.issn.1000-6613.2024-0841
• Materials science and technology • Previous Articles
JIANG Rongyuan1,2(
), LI Simin1,2, CHEN Zhiqiang3, WANG Guilong1, CHEN Juntao1, LIN Guanfeng1,2(
), LU Beili1, HUANG Biao1, CHEN Yandan1
Received:2024-05-22
Revised:2024-07-14
Online:2025-08-04
Published:2025-07-25
Contact:
LIN Guanfeng
江荣源1,2(
), 李思敏1,2, 陈志强3, 王贵龙1, 陈俊涛1, 林冠烽1,2(
), 卢贝丽1, 黄彪1, 陈燕丹1
通讯作者:
林冠烽
作者简介:江荣源(1999—),男,硕士研究生,研究方向为生物质能源与炭材料。E-mail:2731446237@qq.com。
基金资助:CLC Number:
JIANG Rongyuan, LI Simin, CHEN Zhiqiang, WANG Guilong, CHEN Juntao, LIN Guanfeng, LU Beili, HUANG Biao, CHEN Yandan. Preparation of phosphorus-doped hard carbon/MnO x composite and its electrochemical properties[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4039-4049.
江荣源, 李思敏, 陈志强, 王贵龙, 陈俊涛, 林冠烽, 卢贝丽, 黄彪, 陈燕丹. 磷掺杂硬碳/MnO x 复合材料的制备及其电化学性能[J]. 化工进展, 2025, 44(7): 4039-4049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0841
| 样品名称 | 2θ/(°) | 层间距/nm |
|---|---|---|
| CAC | 23.52 | 0.38 |
| PCAC@Mn-80-0 | 21.76 | 0.41 |
| PCAC@Mn-0-0.75 | 24.06 | 0.37 |
| PCAC@Mn-80-0.75 | 22.62 | 0.39 |
| 样品名称 | 2θ/(°) | 层间距/nm |
|---|---|---|
| CAC | 23.52 | 0.38 |
| PCAC@Mn-80-0 | 21.76 | 0.41 |
| PCAC@Mn-0-0.75 | 24.06 | 0.37 |
| PCAC@Mn-80-0.75 | 22.62 | 0.39 |
| 样品名称 | 比表面积/m2·g-1 | 总孔容积/cm3·g-1 | 微孔容积/cm3·g-1 | 中孔容积/cm3·g-1 |
|---|---|---|---|---|
| CAC | 254.59 | 0.604 | 0.495 | 0.109 |
| PCAC@Mn-80-0 | 1287.66 | 0.653 | 0.503 | 0.150 |
| PCAC@Mn-0-0.75 | 61.36 | 0.109 | 0.018 | 0.091 |
| PCAC@Mn-80-0.75 | 1236.25 | 0.645 | 0.549 | 0.096 |
| 样品名称 | 比表面积/m2·g-1 | 总孔容积/cm3·g-1 | 微孔容积/cm3·g-1 | 中孔容积/cm3·g-1 |
|---|---|---|---|---|
| CAC | 254.59 | 0.604 | 0.495 | 0.109 |
| PCAC@Mn-80-0 | 1287.66 | 0.653 | 0.503 | 0.150 |
| PCAC@Mn-0-0.75 | 61.36 | 0.109 | 0.018 | 0.091 |
| PCAC@Mn-80-0.75 | 1236.25 | 0.645 | 0.549 | 0.096 |
| 材料 | 电解液 | 电流密度/A·g-1 | 比电容/F·g-1 | 参考文献 |
|---|---|---|---|---|
| 碳纳米片@MnO2 | 1mol/L Na2SO4 | 0.5 | 137 | [ |
| 碳布@MnO2 | 1mol/L Na2SO4 | 1.0 | 288 | [ |
| 西瓜皮活性炭@MnO x | 6mol/L KOH | 0.5 | 106 | [ |
| 萝卜炭气凝胶@MnO x | 2mol/L KOH | 0.5 | 557 | [ |
| 木质@MnO2 | 1mol/L Na2SO4 | 1.0 | 145 | [ |
| 磷掺杂硬碳@MnO x | 6mol/L KOH | 1.0 | 302 | 本文 |
| 材料 | 电解液 | 电流密度/A·g-1 | 比电容/F·g-1 | 参考文献 |
|---|---|---|---|---|
| 碳纳米片@MnO2 | 1mol/L Na2SO4 | 0.5 | 137 | [ |
| 碳布@MnO2 | 1mol/L Na2SO4 | 1.0 | 288 | [ |
| 西瓜皮活性炭@MnO x | 6mol/L KOH | 0.5 | 106 | [ |
| 萝卜炭气凝胶@MnO x | 2mol/L KOH | 0.5 | 557 | [ |
| 木质@MnO2 | 1mol/L Na2SO4 | 1.0 | 145 | [ |
| 磷掺杂硬碳@MnO x | 6mol/L KOH | 1.0 | 302 | 本文 |
| [1] | ZHANG Jingjing, ZHAO Huaping, LI Jun, et al. In situ encapsulation of iron complex nanoparticles into biomass-derived heteroatom-enriched carbon nanotubes for high-performance supercapacitors[J]. Advanced Energy Materials, 2019, 9(4): 1803221. |
| [2] | 邓秀春, 卓祖优, 白小杰, 等. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651. |
| DENG Xiuchun, ZHUO Zuyou, BAI Xiaojie, et al. Three-dimensional hierarchical porous carbon derived from spent culture substrate of white fungus and its electrochemical application[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5642-5651. | |
| [3] | 牛婷婷, 毛喜玲, 闫欣雨, 等. 三维纳米花NiCo-MOF非对称超级电容器储能特性 [J]. 微纳电子技术: 2024, 61(1): 1-10. |
| NIU tingting, MAO Xiling, YAN Xinyu, et al. Energy storage characteristics of three-dimensional nanoflower NiCo-MOF asymmetric supercapacitors[J]. Micronanoelectronics Technology, 2024, 61(1): 1-10. | |
| [4] | 杨旋, 郑新宇, 吕建华, 等. 碱/尿素溶解体系制备氮掺杂活性炭及其电化学性能研究[J]. 林产化学与工业, 2021, 41(2): 10-16. |
| YANG Xuan, ZHENG Xinyu, Jianhua LYU, et al. Preparation of nitrogen-doped activated carbon from alkali/urea dissolution system and its electrochemical properties[J]. Chemistry and Industry of Forest Products, 2021, 41(2): 10-16. | |
| [5] | PAN Zhenghui, ZHONG Jun, ZHANG Qichong, et al. Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy density[J]. Advanced Energy Materials, 2018, 8(14): 1702946. |
| [6] | ZHU Qiancheng, ZHAO Danyang, CHENG Mingyu, et al. A new view of supercapacitors: Integrated supercapacitors[J]. Advanced Energy Materials, 2019, 9(36): 1901081. |
| [7] | KADO Yuya, SONEDA Yasushi, HATORI Hiroaki, et al. Advanced carbon electrode for electrochemical capacitors[J]. Journal of Solid State Electrochemistry, 2019, 23(4): 1061-1081. |
| [8] | USHA RANI Malothu, NANAJI Katchala, RAO Tata Narasinga, et al. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors[J]. Journal of Power Sources, 2020, 471: 228387. |
| [9] | LI Minglong, YU Jing, WANG Xiaodong, et al. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials[J]. Applied Surface Science, 2020, 530: 147230. |
| [10] | 陈飞, 刘成宝, 陈丰, 等. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
| CHEN Fei, LIU Chengbao, CHEN Feng, et al. Research progress on graphitic carbon nitride based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. | |
| [11] | GUAN Mingjie, WANG Guannan, YONG Cheng, et al. A novel composite hard carbon from waste Camellia oleifera shell modified by phenol-formaldehyde resin for supercapacitor electrode with high specific capacitance[J]. Diamond and Related Materials, 2023, 138: 110248. |
| [12] | ZHANG Huaran, ZHU Mengxiang, ZHOU Jinping. Hard-soft carbon with tailored graphitization for high performance supercapacitors[J]. Journal of Energy Storage, 2023, 66: 107406. |
| [13] | CUI Mingjin, MENG Xiangkang. Overview of transition metal-based composite materials for supercapacitor electrodes[J]. Nanoscale Advances, 2020, 2(12): 5516-5528. |
| [14] | 王帅晴, 杨思文, 李娜, 等. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
| WANG Shuaiqing, YANG Siwen, LI Na, et al. Research progress on element doped biomass carbon materials for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. | |
| [15] | GHOSH Sourav, SANTHOSH Ravichandran, JENIFFER Sofia, et al. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes[J]. Scientific Reports, 2019, 9(1): 16315. |
| [16] | LIN Jinghuang, JIA Henan, LIANG Haoyan, et al. In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors[J]. Advanced Science, 2018, 5(3): 1700687. |
| [17] | SHEOKAND Sandeep, KUMAR Prashant, JABEEN Shakra, et al. 3D highly porous microspherical morphology of NiO nanoparticles for supercapacitor application[J]. Journal of Solid State Electrochemistry, 2023, 27(3): 727-738. |
| [18] | LIU Yang, WEI Minglun, JIANG Caijiang, et al. Ni foam-supported Zn-Co-Ni ternary oxide nanosheet arrays derived from an MOF precursor with enhanced performances for supercapcitors and Ni-Zn batteries[J]. New Journal of Chemistry, 2023, 47(10): 4730-4738. |
| [19] | ZHANG Xiaoliang, YANG Wenshu, LIU Aifeng, et al. Anchoring mesoporous Fe3O4 nanospheres onto N-doped carbon nanotubes toward high-performance composite electrodes for supercapacitors[J]. Ceramics International, 2020, 46(14): 22373-22382. |
| [20] | DANG Shan, WEN Yuxiang, QIN Tianfeng, et al. Nanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solid supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125342. |
| [21] | SHAN Lin, ZHANG Yu, XU Ying, et al. Wood-based hierarchical porous nitrogen-doped carbon/manganese dioxide composite electrode materials for high-rate supercapacitor[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 174. |
| [22] | ZHOU Huiming, ZHAN Yinbo, GUO Feiqiang, et al. Synthesis of biomass-derived carbon aerogel/MnO x composite as electrode material for high-performance supercapacitors[J]. Electrochimica Acta, 2021, 390: 138817. |
| [23] | DONG Xiaomei, JIN Huile, WANG Rongyue, et al. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry‐derived hierarchical porous carbon materials[J]. Advanced Energy Materials, 2018, 8(11) :1702695. |
| [24] | JEONG Ji Hwan, KIM Yoong Ahm, KIM Bo-Hye. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications[J]. Carbon, 2020, 164: 296-304. |
| [25] | 张文, 许升, 吕宗泽, 等. 氮氧掺杂木质素基炭材料的制备及其电化学性能[J]. 林产化学与工业, 2018, 38(3): 55-62. |
| ZHANG Wen, XU Sheng, Zongze LYU, et al. Synthesis of nitrogen and oxygen-doped ligin-based electrode materials and its electrochemical performance[J]. Chemistry and Industry of Forest Products, 2018, 38(3): 55-62. | |
| [26] | KOLAVADA Himalay, GAJJAR P N, GUPTA Sanjeev K. Unraveling quantum capacitance in supercapacitors: Energy storage applications[J]. Journal of Energy Storage, 2024, 81: 110354. |
| [27] | LI Jiaming, WEI Lansheng, JIANG Qimeng, et al. Salt-template assisted synthesis of cornstalk derived hierarchical porous carbon with excellent supercapacitance[J]. Industrial Crops and Products, 2020, 154: 112666. |
| [28] | MENG Tingting, RAMASUBRAMANIAN Brindha, SUNDARRAJAN Subramanian, et al. Unleashing capabilities of supercapacitors: Strategies to reduce internal resistances[J]. Journal of Power Sources, 2024, 596: 234068. |
| [29] | 黄举, 孙佳明, 张坤, 等. N,P共掺杂香蒲基炭气凝胶的制备、表征及其电化学性能[J]. 林产化学与工业, 2022, 42(4): 1-8. |
| HUANG Ju, SUN Jiaming, ZHANG Kun, et al. Preparation, characterization and electrochemical performance of N, P co-doped cattail-derived carbon aerogels[J]. Chemistry and Industry of Forest Products, 2022, 42(4): 1-8. | |
| [30] | ZHANG Zhiwen, LU Cuiying, LIU Guanghui, et al. Self-assembly of caragana-based nanomaterials into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors[J]. Materials Today Advances, 2023, 19: 100394. |
| [31] | LI Chengjie, DONG Xiqing, ZHANG Yingchao, et al. MnO x nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors[J]. Applied Surface Science, 2020, 527: 146842. |
| [32] | TIAN Wenwen, CHENG Dekang, WANG Shan, et al. Phytic acid modified manganese dioxide/graphene composite aerogel as high-performance electrode materials for supercapacitors[J]. Applied Surface Science, 2019, 495: 143589. |
| [33] | KIM Young-Ryeul, Han Ku NAM, LEE Younggeun, et al. Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses[J]. Biochar, 2024, 6(1): 36. |
| [34] | WANG He, WANG Hongjie, HU Chengwen, et al. High-performance, flexible, all-solid-state, asymmetric supercapacitors from recycled resin-based activated carbon, MnO2, and waste nonwoven materials[J]. Journal of Energy Storage, 2024, 84: 110960. |
| [35] | WANG Qiufan, MA Yun, LIANG Xiao, et al. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode[J]. Chemical Engineering Journal, 2019, 371: 145-153. |
| [36] | SONG Min-Kyu, CHENG Shuang, CHEN Haiyan, et al. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage[J]. Nano Letters, 2012, 12(7): 3483-3490. |
| [37] | WANG Xin, WANG Xinyi, ZHOU Xiaofeng, et al. Self-templating synthesis of porous carbon with phytate salts for supercapacitor application[J]. Journal of Energy Storage, 2023, 57: 106221. |
| [38] | KALKAN Elanur, ARVAS Melih Besir, YAZAR Sibel, et al. Investigation of supercapacitor electrode performances of phosphorus-doped graphene oxide electrodes in various deep eutectic solvents and symmetric supercapacitor application[J]. Journal of Energy Storage, 2023, 73: 109184. |
| [39] | SHI Lu, SUN Yadi, LIU Wei, et al. Tailoring the microstructure and solid electrolyte interface of hard carbon to realize high-initial-coulombic-efficiency and high-rate sodium storage[J]. Electrochimica Acta, 2023, 459: 142557. |
| [40] | SINGU Bal Sydulu, YOON Kuk Ro. Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor[J]. Journal of Alloys and Compounds, 2019, 770: 1189-1199. |
| [41] | ZENG Fanyan, PAN Yang, YANG Yong, et al. Facile construction of Mn3O4-MnO2 hetero-nanorods/graphene nanocomposite for highly sensitive electrochemical detection of hydrogen peroxide[J]. Electrochimica Acta, 2016, 196: 587-596. |
| [42] | Qiu LYU, HAO Huilian, GE Manman, et al. S-doped graphene/mixed-valent manganese oxides composite electrode with superior performance for supercapacitors[J]. Journal of Alloys and Compounds, 2020, 819: 152970. |
| [43] | Justin RAJ C, MANIKANDAN Ramu, CHO Won-Je, et al. High-performance flexible and wearable planar supercapacitor of manganese dioxide nanoflowers on carbon fiber cloth[J]. Ceramics International, 2020, 46(13): 21736-21743. |
| [44] | TANG Xiaoning, ZHU Shaokuan, NING Jian, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials, 2021, 36(4): 702-710. |
| [45] | LIN Guanfeng, WANG Guilong, XIONG Yongzhi, et al. High-performance electrosorption of lanthanum ion by Mn3O4-loaded phosphorus-doped porous carbon electrodes via capacitive deionization[J]. Journal of Environmental Management, 2024, 358: 120856. |
| [46] | 娄瑞, 刘钰, 田杰, 等. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
| LOU Rui, LIU Yu, TIAN Jie, et al. Preparation of LNP-based hierarchical porous carbon and its electrochemical properties[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3170-3177. | |
| [47] | SU Die, YANG Jianping, HONG Qingshui, et al. A novel high pseudo-capacitive contribution anode in K-ion battery: Porous TiNbO4/C nanofibers[J]. Journal of Power Sources, 2022, 541: 231635. |
| [48] | 娄瑞, 牛涛嫄, 曹启航, 等. δ-MnO2原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021. |
| LOU Rui, NIU Taoyuan, CAO Qihang, et al. Preparation and electrochemical performances of in situ growth of δ-MnO2 on hierarchical porous carbon derived from LNP[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1013-1021. |
| [1] | DENG Yao, ZHAO Qingpeng, XU Jin, LIU Dawei, MA Xiaoxun, XU Long. Methane chemical looping reforming over cordierite-loaded Fe/Ce oxygen carriers prepared by ball milling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2396-2408. |
| [2] | LI Wentao, FU Guozhi, HUANG Ting, WU Ruihan, LI Kai, MA Zonghu, WU Yangwen, LU Qiang, JIA Bao. Preparation of pyrolytic carbon-based denitrification catalyst modified by Mn and its low-temperature denitrification performance [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7025-7032. |
| [3] | Guijuan LI,Wei XIA,Haixi LUO,Guiru CHENG. Properties and in vitro cell compatibility of NCW-CS/PVA composite membranes [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 356-364. |
| [4] | Fan ZHANG,Yufeng DUAN,Shuai LIU,Jincheng LU,Shaojun REN,Hongqi WEI,Jun WANG. Mercury removal performance of bromine-modified coconut shell activated carbon in real flue gas [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3881-3888. |
| [5] | XIE Yao1,2,3,CHEN Zhen3,WU Yulong3,YANG Mingde3,WEI Liqiao1,2,DING Ranran3. Research on preparation of high purity magnesite from MgCl2?6H2O [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 714-719. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |