Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 1042-1052.DOI: 10.16085/j.issn.1000-6613.2024-0123
• Resources and environmental engineering • Previous Articles
LI Mingyang1(), LIANG Jiangbei2, LIANG Sha2, XIE Weimin1(
), YANG Jiakuan2
Received:
2024-01-16
Revised:
2024-03-25
Online:
2025-03-10
Published:
2025-02-25
Contact:
XIE Weimin
李名扬1(), 梁江北2, 梁莎2, 谢卫民1(
), 杨家宽2
通讯作者:
谢卫民
作者简介:
李名扬(1991—),男,博士,高级工程师,研究方向为固废资源化。E-mail:limingyang0418@163.com。
基金资助:
CLC Number:
LI Mingyang, LIANG Jiangbei, LIANG Sha, XIE Weimin, YANG Jiakuan. Research progress and prospect on electrowinning recovery of lead from spent lead paste[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1042-1052.
李名扬, 梁江北, 梁莎, 谢卫民, 杨家宽. 废铅膏电沉积回收铅技术研究进展与展望[J]. 化工进展, 2025, 44(2): 1042-1052.
方法 | 典型工艺 | 浸出溶液/电解液 | 阳极 | 阴极 | 添加剂 | 铅纯度/% | 铅回收率 /% | 电解能耗 /kWh·(t Pb)-1 | 电流 效率/% | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
酸浸出- 电沉积工艺 | RSR工艺 | H2SiF6、HBF4 | 石墨基非导电 惰性网状材料, 表面沉积PbO2 | 铅 | 500mg/L 砷离子 | >99.99 | 96 | [ | ||
USBM工艺 | H2SiF6 | 二氧化铅包覆的钛材料 | 铅 | 磷酸盐、动物骨胶、木质素磺酸盐 | 99.995~ 99.999 | 92 | 800 | 95~97 | [ | |
CX-EW工艺(Engitec工艺) | HBF4 | 特殊设计的复合阳极材料 | 骨胶 | 800 | [ | |||||
Placid工艺 | HCl-NaCl | 99.995 | 99.5 | 1300 | [ | |||||
HClO4 | 石墨板 | 铜板 | 1.0g/L骨胶+1.0g/L木质素磺酸钠 | 99.9991 | 98.5 | 492 | >97 | [ | ||
甲磺酸(MSA) | 石墨板 | 钛板 | 磷酸 | 99.99 | 95.28 | 598.91 | 99.31 | [ | ||
碱浸出- 电沉积工艺 | AAS工艺 | NH3⋅H2O- (NH4)2SO4 | 低碳钢 | 铅 | 阳离子聚丙烯酰胺 | >95 | [ | |||
NaOH-KNaC4H4O6 | 明胶 | 99.99 | 98.0 | 400~500 | ≥98 | [ | ||||
NaOH | 多孔镍泡沫 | 铜箔 | 99.9992 | 99.9 | 317 | 99.85 | [ | |||
NaOH-木糖醇 溶液 | 316不锈钢 | 316 不锈钢 | 381.71 | 99.68 | [ | |||||
其他溶剂浸出-电沉积工艺 | 氯化胆碱-尿素低共熔溶剂 | 低碳钢片 | 石墨片 | 754 | 85.77 | [ | ||||
氯化胆碱-乙二醇低共熔溶剂 | 低碳钢片 | 石墨片 | 673.28 | 96.06 | [ | |||||
固相电解 工艺 | (NH4)2SO4- NH3·H2O | 不锈钢 | 不锈钢 | 99.89 | 96.15 | 493.89 | 91.68 | [ | ||
H2SO4 | 不锈钢 | 铅板 | 99.7 | 1800 | [ | |||||
酒石酸钠 | 钛镀钌铱板材 | 316L不锈钢板 | 98.74 | 1068 | 91.60 | [ | ||||
(NH4)2SO4 | 钛基锡锑锰钌 涂层阳极材料 | 铅板栅 | 95.80 | 99.46 | 597 | 87.63 | [ | |||
NH3-NH4Cl | 铱钌涂覆的钛网 | 不锈钢 | 98.3 | 689.4 | 86.3 | [ | ||||
Na2SO4 | SnO2-Sb2O5-MnO2-RuO2-钛涂层电极 | 方形铅板 | 97.29 | 97.3 | 818.1 | 98.5 | [ |
方法 | 典型工艺 | 浸出溶液/电解液 | 阳极 | 阴极 | 添加剂 | 铅纯度/% | 铅回收率 /% | 电解能耗 /kWh·(t Pb)-1 | 电流 效率/% | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|
酸浸出- 电沉积工艺 | RSR工艺 | H2SiF6、HBF4 | 石墨基非导电 惰性网状材料, 表面沉积PbO2 | 铅 | 500mg/L 砷离子 | >99.99 | 96 | [ | ||
USBM工艺 | H2SiF6 | 二氧化铅包覆的钛材料 | 铅 | 磷酸盐、动物骨胶、木质素磺酸盐 | 99.995~ 99.999 | 92 | 800 | 95~97 | [ | |
CX-EW工艺(Engitec工艺) | HBF4 | 特殊设计的复合阳极材料 | 骨胶 | 800 | [ | |||||
Placid工艺 | HCl-NaCl | 99.995 | 99.5 | 1300 | [ | |||||
HClO4 | 石墨板 | 铜板 | 1.0g/L骨胶+1.0g/L木质素磺酸钠 | 99.9991 | 98.5 | 492 | >97 | [ | ||
甲磺酸(MSA) | 石墨板 | 钛板 | 磷酸 | 99.99 | 95.28 | 598.91 | 99.31 | [ | ||
碱浸出- 电沉积工艺 | AAS工艺 | NH3⋅H2O- (NH4)2SO4 | 低碳钢 | 铅 | 阳离子聚丙烯酰胺 | >95 | [ | |||
NaOH-KNaC4H4O6 | 明胶 | 99.99 | 98.0 | 400~500 | ≥98 | [ | ||||
NaOH | 多孔镍泡沫 | 铜箔 | 99.9992 | 99.9 | 317 | 99.85 | [ | |||
NaOH-木糖醇 溶液 | 316不锈钢 | 316 不锈钢 | 381.71 | 99.68 | [ | |||||
其他溶剂浸出-电沉积工艺 | 氯化胆碱-尿素低共熔溶剂 | 低碳钢片 | 石墨片 | 754 | 85.77 | [ | ||||
氯化胆碱-乙二醇低共熔溶剂 | 低碳钢片 | 石墨片 | 673.28 | 96.06 | [ | |||||
固相电解 工艺 | (NH4)2SO4- NH3·H2O | 不锈钢 | 不锈钢 | 99.89 | 96.15 | 493.89 | 91.68 | [ | ||
H2SO4 | 不锈钢 | 铅板 | 99.7 | 1800 | [ | |||||
酒石酸钠 | 钛镀钌铱板材 | 316L不锈钢板 | 98.74 | 1068 | 91.60 | [ | ||||
(NH4)2SO4 | 钛基锡锑锰钌 涂层阳极材料 | 铅板栅 | 95.80 | 99.46 | 597 | 87.63 | [ | |||
NH3-NH4Cl | 铱钌涂覆的钛网 | 不锈钢 | 98.3 | 689.4 | 86.3 | [ | ||||
Na2SO4 | SnO2-Sb2O5-MnO2-RuO2-钛涂层电极 | 方形铅板 | 97.29 | 97.3 | 818.1 | 98.5 | [ |
1 | ZHANG Wei, YANG Jiakuan, WU Xu, et al. A critical review on secondary lead recycling technology and its prospect[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 108-122. |
2 | CHEN Kai, HUANG Lei, YAN Beizhan, et al. Effect of lead pollution control on environmental and childhood blood lead level in Nantong, China: An interventional study[J]. Environmental Science & Technology, 2014, 48(21): 12930-12936. |
3 | LIU Wei, CHEN Lujun, TIAN Jinping. Uncovering the evolution of lead in-use stocks in lead-acid batteries and the impact on future lead metabolism in China[J]. Environmental Science & Technology, 2016, 50(10): 5412-5419. |
4 | 朱新锋, 杨丹妮, 胡红云, 等. 废铅酸蓄电池铅膏性质分析[J]. 环境工程学报, 2012, 6(9): 3259-3262. |
ZHU Xinfeng, YANG Danni, HU Hongyun, et al. Properties of lead paste from spent lead-acid battery[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3259-3262. | |
5 | LIU Kang, YANG Jiakuan, LIANG Sha, et al. An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries[J]. Environmental Science & Technology, 2018, 52(4): 2235-2241. |
6 | YU Wenhao, ZHANG Peiyuan, YANG Jiakuan, et al. A low-emission strategy to recover lead compound products directly from spent lead-acid battery paste: Key issue of impurities removal[J]. Journal of Cleaner Production, 2019, 210: 1534-1544. |
7 | YU Wenhao, LI Mingyang, LIANG Sha, et al. Novel PbO@C composite material directly derived from spent lead-acid batteries by one-step spray pyrolysis process[J]. Waste Management, 2023, 165: 51-58. |
8 | RAMUS K, HAWKINS P. Lead/acid battery recycling and the new Isasmelt process[J]. Journal of Power Sources, 1993, 42(1/2): 299-313. |
9 | ELLIS Timothy W, MIRZA Abbas H. The refining of secondary lead for use in advanced lead-acid batteries[J]. Journal of Power Sources, 2010, 195(14): 4525-4529. |
10 | TIAN Xi, WU Yufeng, HOU Ping, et al. Environmental impact and economic assessment of secondary lead production: Comparison of main spent lead-acid battery recycling processes in China[J]. Journal of Cleaner Production, 2017, 144: 142-148. |
11 | 彭露, 张伟, 喻文昊, 等. 废铅蓄电池火法冶炼环境影响分析[J]. 现代化工, 2016, 36(1): 17-20, 22. |
PENG Lu, ZHANG Wei, YU Wenhao, et al. Environmental impact assessment of recycling spent lead-acid battery by using pyrometallurgical process[J]. Modern Chemical Industry, 2016, 36(1): 17-20, 22. | |
12 | ZHU Xinfeng, YANG Jiakuan, GAO Linxia, et al. Preparation of lead carbonate from spent lead paste via chemical conversion[J]. Hydrometallurgy, 2013, 134: 47-53. |
13 | MA Cheng, SHU Yuehong, CHEN Hongyu. Preparation of high-purity lead oxide from spent lead paste by low temperature burning and hydrometallurgical processing with ammonium acetate solution[J]. RSC Advances, 2016, 6(25): 21148-21155. |
14 | GAO Pengran, LIU Yi, Weixin LYU, et al. Methanothermal reduction of mixtures of PbSO4 and PbO2 to synthesize ultrafine α-PbO powders for lead acid batteries[J]. Journal of Power Sources, 2014, 265: 192-200. |
15 | SONMEZ M S, KUMAR R V. Leaching of waste battery paste components. Part 1: Lead citrate synthesis from PbO and PbO2 [J]. Hydrometallurgy, 2009, 95(1/2): 53-60. |
16 | SONMEZ M S, KUMAR R V. Leaching of waste battery paste components. Part 2: Leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution[J]. Hydrometallurgy, 2009, 95(1/2): 82-86. |
17 | LI Mingyang, YANG Jiakuan, LIANG Sha, et al. Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products[J]. Journal of Power Sources, 2019, 436: 226853. |
18 | PAN Junqing, ZHANG Xuan, SUN Yanzhi, et al. Preparation of high purity lead oxide from spent lead acid batteries via desulfurization and recrystallization in sodium hydroxide[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2059-2068. |
19 | 潘军青, 宋爽, 孙艳芝. 一种回收废旧铅酸电池直接生产氧化铅的方法: CN103014347A[P]. 2013-04-03. |
PAN Junqing, SONG Shuang, SUN Yanzhi. Method for recycling waste lead-acid cells to directly produce lead oxide: CN103014347A[P]. 2013-04-03. | |
20 | HU Yuchen, YANG Jiakuan, HU Jingping, et al. Synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next-generation lead-carbon battery[J]. Advanced Functional Materials, 2018, 28(9): 1705294. |
21 | ZHU Xinfeng, HE Xiong, YANG Jiakuan, et al. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid[J]. Journal of Hazardous Materials, 2013, 250/251: 387-396. |
22 | YANG Jiakuan, ZHU Xinfeng, LI Lei, et al. Leaching properties of lead paste in spent lead-acid battery with a hydrometallurgical process at room temperature[J]. Environmental Engineering and Management Journal, 2013, 12(11): 2175-2182. |
23 | DAVID PRENGAMAN R. Recovering lead from batteries[J]. JOM, 1995, 47(1): 31-33. |
24 | COLE E R, LEE A Y, PAULSON D L. Update on recovering lead from scrap batteries[J]. JOM, 1985. 37: 79-83. |
25 | 许文林, 聂文, 王雅琼. 废铅蓄电池铅资源化回收利用新工艺[J]. 电池工业, 2016, 20(1): 30-38. |
XU Wenlin, NIE Wen, WANG Yaqiong. Lead recycling or recovery from waste lead storage batteries[J]. Chinese Battery Industry, 2016, 20(1): 30-38. | |
26 | Gustavo DÍAZ, ANDREWS David. Placid—A clean process for recycling lead from batteries[J]. JOM, 1996, 48(1): 29-31. |
27 | OLPER M, FRACCHIA P. Hydrometallurgical process for an overall recovery of the components of exhausted lead-acid batteries: US4769116A[P]. 1988-09-06. |
28 | 胡红云, 朱新锋, 杨家宽. 湿法回收废旧铅酸蓄电池中铅的研究进展[J]. 化工进展, 2009, 28(9): 1662-1666. |
HU Hongyun, ZHU Xinfeng, YANG Jiakuan. Progress in the hydrometallurgical process for recovering lead from scrap lead-acid batteries[J]. Chemical Industry and Engineering Progress, 2009, 28(9): 1662-1666. | |
29 | ANDREWS D, RAYCHAUDHURI A, FRIAS C. Environmentally sound technologies for recycling secondary lead[J]. Journal of Power Sources, 2000, 88(1): 124-129. |
30 | EXPÓSITO E, INIESTA J, GONZÁLEZ-GARCÍA J, et al. Lead electrowinning in an acid chloride medium[J]. Journal of Power Sources, 2001, 92(1/2): 260-266. |
31 | ZHANG Xuan, SUN Yanzhi, PAN Junqing. A clean and highly efficient leaching-electrodeposition lead recovery route in HClO4 solution[J]. International Journal of Electrochemical Science, 2017, 12(8): 6966-6979. |
32 | 张轩. 废铅酸电池中回收高纯度金属铅和α-PbO新工艺及其电化学性能研究[D]. 北京: 北京化工大学, 2017. |
ZHANG Xuan. Study on new recovery technology and electrochemical performance of high purity lead and α-PbO from the spent lead acid batteries[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
33 | WU Zhenghui, DREISINGER David B, URCH Henning, et al. Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA)[J]. Hydrometallurgy, 2014, 142: 23-35. |
34 | 常聪, 李有刚, 陈永明, 等. 甲基磺酸体系铅电沉积工艺研究[J]. 矿冶工程, 2020, 40(1): 105-108, 113. |
CHANG Cong, LI Yougang, CHEN Yongming, et al. Lead electrodeposition in methanesulfonic acid system[J]. Mining and Metallurgical Engineering, 2020, 40(1): 105-108, 113. | |
35 | CHANG Cong, YANG Shenghai, LI Yougang, et al. Green hydrometallurgical extraction of metallic lead from spent lead paste in the methanesulfonic acid system[J]. Separation and Purification Technology, 2023. 306: 122592. |
36 | 熊睿, 基于隔膜的铅电沉积及其机理研究[D]. 武汉: 华中科技大学, 2020. |
XIONG Rui. Study on lead electrodeposition based on ion exchange membrane and its mechanism[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
37 | SCHWARTZ Lorne D, ETSELL Thomas H. The cementation of lead from ammoniacal ammonium sulphate solution[J]. Hydrometallurgy, 1998, 47(2/3): 273-279. |
38 | BRATT G C, PICKERING R W. Production of lead via ammoniacal ammonium sulfate leaching[J]. Metallurgical Transactions, 1970, 1(8): 2141-2149. |
39 | 陈维平, 田一庄, 杨霞, 等. 废铅蓄电池浆料回收技术研究[J]. 有色金属, 1997(4): 65-68, 58. |
CHEN Weiping, TIAN Yizhuang, YANG Xia, et al. Study on slurry recovery technology of waste lead storage battery[J]. Nonferrous Metals Engineering, 1997(4): 65-68, 58. | |
40 | 潘军青, 岳希红, 孙艳芝, 等. 一种清洁湿法固液两相电解还原回收铅的方法: CN101831668A[P]. 2010-09-15. |
PAN Junqing, SUN Yanzhi, TANG Lu, et al. Clean wet-method solid-liquid two-phase electroreduction lead recovery method: CN101831668A[P]. 2010-09-15. | |
41 | PAN Junqing, ZHANG Chao, SUN Yanzhi, et al. A new process of lead recovery from waste lead-acid batteries by electrolysis of alkaline lead oxide solution[J]. Electrochemistry Communications, 2012, 19: 70-72. |
42 | 潘军青, 边亚茹. 铅酸蓄电池回收铅技术的发展现状[J]. 北京化工大学学报(自然科学版), 2014, 41(3): 1-14. |
PAN Junqing, BIAN Yaru. Development and current situation of the recovery technology for lead acid batteries[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2014, 41(3): 1-14. | |
43 | PAN Junqing, SUN Yanzhi, LI Wei, et al. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell[J]. Nature Communications, 2013, 4: 2178. |
44 | 郭明宜. 碱性木糖醇体系回收废铅蓄电池铅膏的研究[D]. 洛阳: 河南科技大学, 2018. |
GUO Mingyi. Recovery of lead from exhausted lead-acid battery paste in alkaline solution containing xylitol[D]. Luoyang: Henan University of Science and Technology, 2018. | |
45 | 耿笑. 氯化胆碱-尿素低共熔溶剂电解回收废铅膏制备铅粉的研究[D]. 昆明: 昆明理工大学, 2022. |
GENG Xiao. Study on the preparation of lead powder by electrolytic recovery of waste lead paste using choline chloride urea low melting point solvent[D]. Kunming: Kunming University of Science and Technology, 2022. | |
46 | 耿笑, 汝娟坚, 华一新, 等. 低共熔溶剂电化学回收废铅膏可控制备铅粉的研究[J]. 有色金属科学与工程, 2021, 12(2): 8-13, 49. |
GENG Xiao, RU Juanjian, HUA Yixin, et al. Electrochemical recovery of spent lead acid battery paste to controllably prepare lead powders in deep eutectic solvents[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 8-13, 49. | |
47 | 黄皓铭, 汝娟坚, 华一新, 等. 氯化胆碱-乙二醇低共熔溶剂中高效电解回收废铅膏制备铅粉[J]. 过程工程学报, 2023, 23(1): 107-114. |
HUANG Haoming, RU Juanjian, HUA Yixin, et al. Recycling of scrap lead paste to prepare lead powder by high efficiency electrolysis in choline chloride-ethylene glycol deep eutectic solvent[J]. The Chinese Journal of Process Engineering, 2023, 23(1): 107-114. | |
48 | 贺山明, 吴鑫, 杜鹏, 等. 铵盐体系废铅膏固相电解还原直接制备金属铅的实验研究[J]. 蓄电池, 2020, 57(4): 151-155. |
HE Shanming, WU Xin, DU Peng, et al. The study of direct preparation of lead from waste lead paste by solid-phase electroreduction in ammonium electrolyte system[J]. Chinese LABAT Man, 2020, 57(4): 151-155. | |
49 | 胡彪, 陈龙, 王海北, 等. 废铅膏直接电解回收金属铅试验[J]. 环境工程, 2019, 37(10): 196-200. |
HU Biao, CHEN Long, WANG Haibei, et al. Experimental study on recovering lead from waste lead paste by direct electrolysis[J]. Environmental Engineering, 2019, 37(10): 196-200. | |
50 | 李新颖, 王伟, 谢锋, 等. 废铅膏在酒石酸钠体系直接固相电解制备粗铅[J]. 有色金属(冶炼部分), 2022(8): 24-32. |
LI Xinying, WANG Wei, XIE Feng, et al. Preparation of crude lead by direct solid phase electrolysis of spent lead paste in sodium tartrate system[J]. Nonferrous Metals (Extractive Metallurgy), 2022(8): 24-32. | |
51 | DAI Fushu, HUANG Hui, CHEN Buming, et al. Recovery of high purity lead from spent lead paste via direct electrolysis and process evaluation[J]. Separation and Purification Technology, 2019, 224: 237-246. |
52 | 戴富书. 固相电解法回收废铅酸蓄电池中的铅膏研究[D]. 昆明: 昆明理工大学, 2019. |
DAI Fushu. Research on the recovery of lead paste from waste lead-acid batteries using solid-phase electrolysis method[D]. Kunming: Kunming University of Science and Technology, 2019. | |
53 | FAN Yangyang, LIU Yan, NIU Liping, et al. Preparation of metal lead from waste lead paste by direct electrochemical reduction in NH3-NH4Cl solution[J]. JOM, 2019, 71(12): 4518-4527. |
54 | WANG Lei, XIE Feng, WANG Wei, et al. Eco-friendly and efficient strategy for lead recovery from spent lead paste by bagged cathode solid-phase electroreduction[J]. Chemical Engineering Journal, 2023, 473: 145208. |
[1] | GAO Yuli, WANG Hongqiu, HUANG Gexing, XIAN Nanying, SHI Xiaoyu. Research progress and the industrialization of all-solid-state battery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4767-4778. |
[2] | LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062. |
[3] | LI Haoran, WANG Yan, ZHANG Tao, LYU Li, TANG Wenxiang, TANG Shengwei. Controllable regulation of microdroplets size in W/O microemulsion with Cu(Ac)2-Zn(Ac)2 solution as aqueous phase [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5168-5176. |
[4] | GUO Pei, CUI Cancan, KONG Dejie, HUANG Sheng. Development trend of sulfide solid electrolytes for solid-state lithium batteries in the context of “dual carbon goals” [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5193-5206. |
[5] | SHAO Wei, MA Zhuang, ZHENG Hongwei, LIU Guangju, GAO Xiang, XIE Jian, HE Qinggang. Recent advances of organic materials for aqueous rechargeable batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3872-3890. |
[6] | WANG Qingtai, ZHANG Sai, WANG Jiemin. Numerical simulation for non-uniform compression of porous electrodes in vanadium flow batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2940-2949. |
[7] | LIU Haodong, ZHANG Pengfei, HUANG Yuqi. Visualization and velocity field test of thermal runaway jet of ternary lithium battery [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 703-712. |
[8] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
[9] | TIAN Xiaolu, YI Yikun, HAI Feng, WU Zhendi, ZHENG Shentuo, GUO Jingyu, LI Mingtao. Research progress in shear-thickening electrolytes for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5786-5800. |
[10] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[11] | GUAN Haoran, ZHU Lina, ZHU Lingyue, YUAN Dandan, ZHANG Yuqing, WANG Baohui. Progress and challenges of electrochemical synthesis of ammonia from different hydrogen and nitrogen sources [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4098-4110. |
[12] | HU Huakun, XUE Wendong, JIANG Peng, LI Yong. Research progress of safety additives for lithium ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455. |
[13] | GAO Chenxiang, ZHANG Ke, LIU Chunyuan, FENG Xin, HUO Pengfei. Research progress on the application of wood in electrochemistry [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 203-210. |
[14] | PAN Di, KONG Jiangrong, LIU Xinnan, HUANG Meiqi, ZHOU Tao. Preparation Li7La3Zr2O12 garnet solid-state electrolyte by wet-chemical technique [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 334-339. |
[15] | LUO Laiming, CHEN Si’an, WANG Haining, ZHANG Jin, LU Shanfu, XIANG Yan. Simulation and optimization of large-scale (200cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |