Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1167-1177.DOI: 10.16085/j.issn.1000-6613.2023-1498
• Chemical processes and equipment • Previous Articles
MA Nan1(), LI Hongqi1(), LIU Hualin2,3, YANG Lei2,3
Received:
2023-08-28
Revised:
2023-11-18
Online:
2024-04-11
Published:
2024-03-10
Contact:
LI Hongqi
通讯作者:
李洪奇
作者简介:
马楠(1988—),女,博士研究生,研究方向为计算机技术与资源信息工程、油气领域智能决策。E-mail:mn2006hotter@126.com。
基金资助:
CLC Number:
MA Nan, LI Hongqi, LIU Hualin, YANG Lei. Scheduling algorithm for refinery crude oil storage and transportation based on SAC[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1167-1177.
马楠, 李洪奇, 刘华林, 杨磊. 基于SAC的炼厂原油储运调度方法[J]. 化工进展, 2024, 43(3): 1167-1177.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1498
参数名称 | 参数值 |
---|---|
折扣因子 | 0.99 |
策略网络初始学习率 | 0.03 |
价值网络初始学习率 | 0.03 |
软更新系数 | 0.005 |
采样批量 | 512 |
熵阈值 | 0.9 |
经验池大小 | 100000 |
优化器 | Adam |
参数名称 | 参数值 |
---|---|
折扣因子 | 0.99 |
策略网络初始学习率 | 0.03 |
价值网络初始学习率 | 0.03 |
软更新系数 | 0.005 |
采样批量 | 512 |
熵阈值 | 0.9 |
经验池大小 | 100000 |
优化器 | Adam |
周期 | 各储罐液位水平 | 加工水平 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
商储罐 | 码头罐 | 厂内罐 | 加工装置 | ||||||||||||
H01 | H02 | H03 | H04 | F01 | F02 | F03 | F04 | F05 | F06 | CDU1 | CDU2 | ||||
1 | 0.67 | 0.17 | 0.87 | 0.06 | 0.12 | 0.70 | 0.84 | 0.47 | 0.15 | 0.48 | 1.00 | 0.48 | |||
2 | 0.63 | 0.34 | 0.87 | 0.11 | 0.12 | 0.68 | 0.82 | 0.47 | 0.13 | 0.52 | 1.00 | 0.48 | |||
3 | 0.60 | 0.50 | 0.87 | 0.17 | 0.12 | 0.65 | 0.80 | 0.46 | 0.11 | 0.53 | 1.00 | 0.48 | |||
4 | 0.57 | 0.67 | 0.87 | 0.22 | 0.12 | 0.62 | 0.78 | 0.45 | 0.09 | 0.55 | 1.00 | 0.48 | |||
5 | 0.53 | 0.83 | 0.87 | 0.28 | 0.12 | 0.60 | 0.76 | 0.44 | 0.07 | 0.57 | 1.00 | 0.48 | |||
6 | 0.50 | 1.00 | 0.87 | 0.33 | 0.11 | 0.57 | 0.74 | 0.44 | 0.07 | 0.57 | 1.00 | 0.48 | |||
7 | 0.67 | 1.00 | 0.87 | 0.33 | 0.11 | 0.57 | 0.75 | 0.43 | 0.04 | 0.58 | 0.72 | 0.48 | |||
8 | 0.84 | 1.00 | 0.80 | 0.30 | 0.11 | 0.57 | 0.75 | 0.42 | 0.04 | 0.58 | 0.72 | 0.48 | |||
9 | 0.93 | 1.00 | 0.73 | 0.26 | 0.11 | 0.57 | 0.75 | 0.41 | 0.04 | 0.57 | 0.72 | 0.48 | |||
10 | 0.93 | 1.00 | 0.66 | 0.22 | 0.11 | 0.57 | 0.75 | 0.40 | 0.05 | 0.56 | 0.72 | 0.48 | |||
11 | 0.93 | 1.00 | 0.59 | 0.22 | 0.10 | 0.58 | 0.76 | 0.40 | 0.05 | 0.55 | 0.72 | 0.48 | |||
12 | 0.93 | 1.00 | 0.52 | 0.22 | 0.10 | 0.58 | 0.76 | 0.39 | 0.05 | 0.54 | 0.72 | 0.48 | |||
13 | 0.93 | 1.00 | 0.45 | 0.22 | 0.10 | 0.58 | 0.76 | 0.38 | 0.05 | 0.53 | 0.72 | 0.48 | |||
14 | 0.93 | 1.00 | 0.38 | 0.22 | 0.10 | 0.58 | 0.77 | 0.37 | 0.05 | 0.52 | 0.72 | 0.48 | |||
15 | 0.93 | 1.00 | 0.31 | 0.22 | 0.10 | 0.58 | 0.77 | 0.36 | 0.05 | 0.51 | 0.72 | 0.48 | |||
16 | 0.93 | 1.00 | 0.25 | 0.22 | 0.09 | 0.58 | 0.77 | 0.36 | 0.05 | 0.50 | 0.72 | 0.48 | |||
17 | 0.93 | 1.00 | 0.18 | 0.22 | 0.09 | 0.58 | 0.77 | 0.35 | 0.05 | 0.49 | 0.72 | 0.48 | |||
18 | 0.93 | 1.00 | 0.11 | 0.22 | 0.09 | 0.59 | 0.78 | 0.34 | 0.05 | 0.48 | 0.72 | 0.48 | |||
19 | 0.93 | 1.00 | 0.11 | 0.22 | 0.09 | 0.59 | 0.78 | 0.33 | 0.05 | 0.48 | 0.72 | 0.48 | |||
20 | 0.93 | 1.00 | 0.11 | 0.22 | 0.09 | 0.59 | 0.78 | 0.32 | 0.06 | 0.47 | 0.72 | 0.48 | |||
21 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.78 | 0.32 | 0.06 | 0.46 | 0.72 | 0.48 | |||
22 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.79 | 0.31 | 0.06 | 0.45 | 0.72 | 0.48 | |||
23 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.79 | 0.30 | 0.06 | 0.44 | 0.72 | 0.48 | |||
24 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.79 | 0.29 | 0.06 | 0.43 | 0.72 | 0.48 | |||
25 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.60 | 0.79 | 0.28 | 0.06 | 0.42 | 0.72 | 0.48 | |||
26 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.80 | 0.28 | 0.06 | 0.41 | 0.72 | 0.48 | |||
27 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.80 | 0.27 | 0.06 | 0.40 | 0.72 | 0.48 | |||
28 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.80 | 0.26 | 0.06 | 0.39 | 0.72 | 0.48 | |||
29 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.81 | 0.25 | 0.07 | 0.38 | 0.72 | 0.48 | |||
30 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.81 | 0.25 | 0.07 | 0.37 | 0.72 | 0.48 | |||
31 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.60 | 0.81 | 0.24 | 0.07 | 0.37 | 0.72 | 0.48 | |||
32 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.60 | 0.81 | 0.23 | 0.07 | 0.36 | 0.72 | 0.48 | |||
33 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.61 | 0.82 | 0.22 | 0.07 | 0.35 | 0.72 | 0.48 | |||
34 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.61 | 0.82 | 0.21 | 0.07 | 0.34 | 0.72 | 0.48 | |||
35 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.61 | 0.82 | 0.21 | 0.07 | 0.33 | 0.72 | 0.48 | |||
36 | 0.93 | 0.97 | 0.11 | 0.24 | 0.05 | 0.61 | 0.82 | 0.20 | 0.07 | 0.32 | 0.72 | 0.48 | |||
37 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.61 | 0.83 | 0.19 | 0.07 | 0.31 | 0.72 | 0.48 | |||
38 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.61 | 0.83 | 0.18 | 0.07 | 0.30 | 0.72 | 0.48 | |||
39 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.61 | 0.83 | 0.17 | 0.08 | 0.29 | 0.72 | 0.48 | |||
40 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.62 | 0.84 | 0.17 | 0.08 | 0.28 | 0.72 | 0.48 | |||
41 | 0.93 | 0.93 | 0.11 | 0.30 | 0.04 | 0.62 | 0.84 | 0.16 | 0.08 | 0.27 | 0.72 | 0.48 | |||
42 | 0.93 | 0.93 | 0.11 | 0.30 | 0.04 | 0.62 | 0.84 | 0.15 | 0.08 | 0.27 | 0.72 | 0.48 |
周期 | 各储罐液位水平 | 加工水平 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
商储罐 | 码头罐 | 厂内罐 | 加工装置 | ||||||||||||
H01 | H02 | H03 | H04 | F01 | F02 | F03 | F04 | F05 | F06 | CDU1 | CDU2 | ||||
1 | 0.67 | 0.17 | 0.87 | 0.06 | 0.12 | 0.70 | 0.84 | 0.47 | 0.15 | 0.48 | 1.00 | 0.48 | |||
2 | 0.63 | 0.34 | 0.87 | 0.11 | 0.12 | 0.68 | 0.82 | 0.47 | 0.13 | 0.52 | 1.00 | 0.48 | |||
3 | 0.60 | 0.50 | 0.87 | 0.17 | 0.12 | 0.65 | 0.80 | 0.46 | 0.11 | 0.53 | 1.00 | 0.48 | |||
4 | 0.57 | 0.67 | 0.87 | 0.22 | 0.12 | 0.62 | 0.78 | 0.45 | 0.09 | 0.55 | 1.00 | 0.48 | |||
5 | 0.53 | 0.83 | 0.87 | 0.28 | 0.12 | 0.60 | 0.76 | 0.44 | 0.07 | 0.57 | 1.00 | 0.48 | |||
6 | 0.50 | 1.00 | 0.87 | 0.33 | 0.11 | 0.57 | 0.74 | 0.44 | 0.07 | 0.57 | 1.00 | 0.48 | |||
7 | 0.67 | 1.00 | 0.87 | 0.33 | 0.11 | 0.57 | 0.75 | 0.43 | 0.04 | 0.58 | 0.72 | 0.48 | |||
8 | 0.84 | 1.00 | 0.80 | 0.30 | 0.11 | 0.57 | 0.75 | 0.42 | 0.04 | 0.58 | 0.72 | 0.48 | |||
9 | 0.93 | 1.00 | 0.73 | 0.26 | 0.11 | 0.57 | 0.75 | 0.41 | 0.04 | 0.57 | 0.72 | 0.48 | |||
10 | 0.93 | 1.00 | 0.66 | 0.22 | 0.11 | 0.57 | 0.75 | 0.40 | 0.05 | 0.56 | 0.72 | 0.48 | |||
11 | 0.93 | 1.00 | 0.59 | 0.22 | 0.10 | 0.58 | 0.76 | 0.40 | 0.05 | 0.55 | 0.72 | 0.48 | |||
12 | 0.93 | 1.00 | 0.52 | 0.22 | 0.10 | 0.58 | 0.76 | 0.39 | 0.05 | 0.54 | 0.72 | 0.48 | |||
13 | 0.93 | 1.00 | 0.45 | 0.22 | 0.10 | 0.58 | 0.76 | 0.38 | 0.05 | 0.53 | 0.72 | 0.48 | |||
14 | 0.93 | 1.00 | 0.38 | 0.22 | 0.10 | 0.58 | 0.77 | 0.37 | 0.05 | 0.52 | 0.72 | 0.48 | |||
15 | 0.93 | 1.00 | 0.31 | 0.22 | 0.10 | 0.58 | 0.77 | 0.36 | 0.05 | 0.51 | 0.72 | 0.48 | |||
16 | 0.93 | 1.00 | 0.25 | 0.22 | 0.09 | 0.58 | 0.77 | 0.36 | 0.05 | 0.50 | 0.72 | 0.48 | |||
17 | 0.93 | 1.00 | 0.18 | 0.22 | 0.09 | 0.58 | 0.77 | 0.35 | 0.05 | 0.49 | 0.72 | 0.48 | |||
18 | 0.93 | 1.00 | 0.11 | 0.22 | 0.09 | 0.59 | 0.78 | 0.34 | 0.05 | 0.48 | 0.72 | 0.48 | |||
19 | 0.93 | 1.00 | 0.11 | 0.22 | 0.09 | 0.59 | 0.78 | 0.33 | 0.05 | 0.48 | 0.72 | 0.48 | |||
20 | 0.93 | 1.00 | 0.11 | 0.22 | 0.09 | 0.59 | 0.78 | 0.32 | 0.06 | 0.47 | 0.72 | 0.48 | |||
21 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.78 | 0.32 | 0.06 | 0.46 | 0.72 | 0.48 | |||
22 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.79 | 0.31 | 0.06 | 0.45 | 0.72 | 0.48 | |||
23 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.79 | 0.30 | 0.06 | 0.44 | 0.72 | 0.48 | |||
24 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.59 | 0.79 | 0.29 | 0.06 | 0.43 | 0.72 | 0.48 | |||
25 | 0.93 | 1.00 | 0.11 | 0.22 | 0.08 | 0.60 | 0.79 | 0.28 | 0.06 | 0.42 | 0.72 | 0.48 | |||
26 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.80 | 0.28 | 0.06 | 0.41 | 0.72 | 0.48 | |||
27 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.80 | 0.27 | 0.06 | 0.40 | 0.72 | 0.48 | |||
28 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.80 | 0.26 | 0.06 | 0.39 | 0.72 | 0.48 | |||
29 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.81 | 0.25 | 0.07 | 0.38 | 0.72 | 0.48 | |||
30 | 0.93 | 1.00 | 0.11 | 0.22 | 0.07 | 0.60 | 0.81 | 0.25 | 0.07 | 0.37 | 0.72 | 0.48 | |||
31 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.60 | 0.81 | 0.24 | 0.07 | 0.37 | 0.72 | 0.48 | |||
32 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.60 | 0.81 | 0.23 | 0.07 | 0.36 | 0.72 | 0.48 | |||
33 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.61 | 0.82 | 0.22 | 0.07 | 0.35 | 0.72 | 0.48 | |||
34 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.61 | 0.82 | 0.21 | 0.07 | 0.34 | 0.72 | 0.48 | |||
35 | 0.93 | 1.00 | 0.11 | 0.22 | 0.06 | 0.61 | 0.82 | 0.21 | 0.07 | 0.33 | 0.72 | 0.48 | |||
36 | 0.93 | 0.97 | 0.11 | 0.24 | 0.05 | 0.61 | 0.82 | 0.20 | 0.07 | 0.32 | 0.72 | 0.48 | |||
37 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.61 | 0.83 | 0.19 | 0.07 | 0.31 | 0.72 | 0.48 | |||
38 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.61 | 0.83 | 0.18 | 0.07 | 0.30 | 0.72 | 0.48 | |||
39 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.61 | 0.83 | 0.17 | 0.08 | 0.29 | 0.72 | 0.48 | |||
40 | 0.93 | 0.93 | 0.11 | 0.30 | 0.05 | 0.62 | 0.84 | 0.17 | 0.08 | 0.28 | 0.72 | 0.48 | |||
41 | 0.93 | 0.93 | 0.11 | 0.30 | 0.04 | 0.62 | 0.84 | 0.16 | 0.08 | 0.27 | 0.72 | 0.48 | |||
42 | 0.93 | 0.93 | 0.11 | 0.30 | 0.04 | 0.62 | 0.84 | 0.15 | 0.08 | 0.27 | 0.72 | 0.48 |
方法 | 油轮在港时间/h | 油罐付油事件数/个 | 油罐油种切换事件数/个 | 装置加工切换事件数/个 | 加工计划执行率/% | 求解平均时间/min |
---|---|---|---|---|---|---|
数学规划 | 36.0 | 14 | 1 | 2 | 99.96 | 2.5 |
本算法 | 34.2 | 12 | 1 | 1 | 99.98 | 0.0023 |
降低/提升率 | 降低5% | 降低14.3% | 持平 | 降低50% | 提升0.02% | 提升99.9% |
方法 | 油轮在港时间/h | 油罐付油事件数/个 | 油罐油种切换事件数/个 | 装置加工切换事件数/个 | 加工计划执行率/% | 求解平均时间/min |
---|---|---|---|---|---|---|
数学规划 | 36.0 | 14 | 1 | 2 | 99.96 | 2.5 |
本算法 | 34.2 | 12 | 1 | 1 | 99.98 | 0.0023 |
降低/提升率 | 降低5% | 降低14.3% | 持平 | 降低50% | 提升0.02% | 提升99.9% |
方法 | 油罐付油事件数/个 | 油罐油种切换事件数/个 | 装置加工切换事件数/个 | 加工计划执行率/% | 求解平均时间/min |
---|---|---|---|---|---|
数学规划 | 13 | 1 | 1 | 99.96 | 2.0 |
本算法 | 7 | 1 | 1 | 99.98 | 0.0021 |
降低/提升率 | 降低46.1% | 持平 | 持平 | 提升0.02 | 提升99.9% |
方法 | 油罐付油事件数/个 | 油罐油种切换事件数/个 | 装置加工切换事件数/个 | 加工计划执行率/% | 求解平均时间/min |
---|---|---|---|---|---|
数学规划 | 13 | 1 | 1 | 99.96 | 2.0 |
本算法 | 7 | 1 | 1 | 99.98 | 0.0021 |
降低/提升率 | 降低46.1% | 持平 | 持平 | 提升0.02 | 提升99.9% |
方法 | 油轮在港时间/h | 油罐付油事件数/个 | 油罐油种切换事件数/个 | 装置加工切换事件数/个 | 加工计划执行率/% |
---|---|---|---|---|---|
油轮按计划到港 | 34.2 | 12 | 1 | 1 | 99.98 |
油轮无法到港 | — | 10 | 1 | 1 | 99.98 |
方法 | 油轮在港时间/h | 油罐付油事件数/个 | 油罐油种切换事件数/个 | 装置加工切换事件数/个 | 加工计划执行率/% |
---|---|---|---|---|---|
油轮按计划到港 | 34.2 | 12 | 1 | 1 | 99.98 |
油轮无法到港 | — | 10 | 1 | 1 | 99.98 |
1 | Uğur YÜZGEÇ, PALAZOGLU Ahmet, ROMAGNOLI Jose A. Refinery scheduling of crude oil unloading, storage and processing using a model predictive control strategy[J]. Computers & Chemical Engineering, 2010, 34(10): 1671-1686. |
2 | 郑万鹏, 高小永, 朱桂瑶, 等. 原油作业过程优化的研究进展[J]. 化工学报, 2021, 72(11): 5481-5501. |
ZHENG Wanpeng, GAO Xiaoyong, ZHU Guiyao, et al. Research progress on crude oil operation optimization[J]. CIESC Journal, 2021, 72(11): 5481-5501. | |
3 | LEE Heeman, PINTO Jose M, GROSSMANN Ignacio E, et al. Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management[J]. Industrial & Engineering Chemistry Research, 1996, 35(5): 1630-1641. |
4 | ZHANG Haoran, LIANG Yongtu, LIAO Qi, et al. Mixed-time mixed-integer linear programming for optimal detailed scheduling of a crude oil port depot[J]. Chemical Engineering Research and Design, 2018, 137: 434-451. |
5 | FURMAN Kevin C, JIA Zhenya, IERAPETRITOU Marianthi G. A robust event-based continuous time formulation for tank transfer scheduling[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 9126-9136. |
6 | ZHANG Shujing, XU Qiang. Refinery continuous-time crude scheduling with consideration of long-distance pipeline transportation[J]. Computers & Chemical Engineering, 2015, 75: 74-94. |
7 | ASSIS Leonardo S, CAMPONOGARA Eduardo, GROSSMANN Ignacio E. A MILP-based clustering strategy for integrating the operational management of crude oil supply[J]. Computers & Chemical Engineering, 2021, 145: 107161. |
8 | 周智菊, 周祥, 周涵. 基于滚动时域分解策略的原油混输调度模型[J]. 石油学报(石油加工), 2021, 37(2): 320-329. |
ZHOU Zhiju, ZHOU Xiang, ZHOU Han. Scheduling model based on rolling-horizon algorithm for crude oil transportation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(2): 320-329. | |
9 | HOU Yan, WU Naiqi, ZHOU Mengchu, et al. Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(3): 517-530. |
10 | HOU Yan, WU Naiqi, LI Zhiwu, et al. Many-objective optimization for scheduling of crude oil operations based on NSGA-Ⅲ with consideration of energy efficiency[J]. Swarm and Evolutionary Computation, 2020, 57: 100714. |
11 | 王子豪, 荣冈, 冯毅萍. 基于仿真的炼油厂罐区操作再调度策略[J]. 化工学报, 2012, 63(9): 2755-2765. |
WANG Zihao, RONG Gang, FENG Yiping. Simulation-based rescheduling strategy of tank farm operations in refinery[J]. CIESC Journal, 2012, 63(9): 2755-2765. | |
12 | VINYALS Oriol, BABUSCHKIN Igor, CZARNECKI Wojciech M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575(7782): 350-354. |
13 | BADIA Adrià Puigdomènech, PIOT Bilal, KAPTUROWSKI Steven, et al. Agent57: Outperforming the Atari human benchmark[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 507-517. |
14 | YANG Xinyi, WANG Ziyi, ZHANG Hengxi, et al. A review: Machine learning for combinatorial optimization problems in energy areas[J]. Algorithms, 2022, 15(6): 205. |
15 | KUHNLE Andreas, Marvin Carl MAY, Louis SCHÄFER, et al. Explainable reinforcement learning in production control of job shop manufacturing system[J]. International Journal of Production Research, 2022, 60(19): 5812-5834. |
16 | PARK Junyoung, CHUN Jaehyeong, KIM Sang Hun, et al. Learning to schedule job-shop problems: Representation and policy learning using graph neural network and reinforcement learning[J]. International Journal of Production Research, 2021, 59(11): 3360-3377. |
17 | LUO Shu. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing, 2020, 91: 106208. |
18 | Lang Sebastian, Behrendt Fabian, Lanzerath Nico, et al. Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production[C]//Proceedings of the Winter Simulation Conference. December 14 - 18, 2020, Orlando, Florida. New York: ACM, 2020: 3057-3068. |
19 | ESTESO Ana, PEIDRO David, MULA Josefa, et al. Reinforcement learning applied to production planning and control[J]. International Journal of Production Research, 2023, 61(16): 5772-5789. |
20 | ZHENG Shuai, Gupta Chetan, Serita Susumu. Manufacturing dispatching using reinforcement and transfer learning[C]//The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2019, 11908: 655-671. |
21 | KUHNLE Andreas, KAISER Jan-Philipp, Felix THEIß, et al. Designing an adaptive production control system using reinforcement learning[J]. Journal of Intelligent Manufacturing, 2021, 32(3): 855-876. |
22 | HAARNOJA Tuomas, ZHOU Aurick, ABBEEL Pieter, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[EB/OL]. 2018: arXiv: 1801.01290. |
23 | XU Yahao, WEI Yiran, JIANG Keyang, et al. Action decoupled SAC reinforcement learning with discrete-continuous hybrid action spaces[J]. Neurocomputing, 2023, 537: 141-151. |
[1] | CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. |
[2] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[3] | LIU Feng, CHU Yang, LI Huifeng, LI Mingfeng, ZHU Mei, ZHANG Runqiang. Reaction process intensification of heavy molecular mercaptan in FCC gasoline catalytic conversion [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 279-284. |
[4] | YANG Xue, LIU Ke, ZHANG Chengxiang, LI Donglin, WANG Jiangqin, YANG Wanliang. Research progress of 2D layered materials for fuel oil oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 422-436. |
[5] | LIU Meijia, WANG Gang, ZHANG Zhongdong, HE Shengbao, GAO Jinsen. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199. |
[6] | CUI Ruili, CHENG Tao, SONG Junnan, NIU Guifeng, LIU Yuanyuan, ZHANG Tao, ZHAO Yusheng, WANG Luhai. Regeneration characterization and performance evaluation of the fixed-bed residue hydrotreating catalyst for microcarbon reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5200-5204. |
[7] | HUO Wentao, LIU Wen, YU Qiang, AN Jie, ZHU Xiangxue, QIN Yucai, LI Xiujie. Oligomerization of isobutene over MWW zeolite based catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5205-5212. |
[8] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[11] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[12] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[13] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[14] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
[15] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |