1 |
WU J Q, JIANG W M, LIU Y, et al. Study on hydrodynamic characteristics of oil-water annular flow in 90° elbow[J]. Chemical Engineering Research and Design, 2020, 153: 443-451.
|
2 |
吴君强, 蒋文明, 杜仕林, 等. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741.
|
|
WU J Q, JIANG W M, DU S L, et al. Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying[J]. CIESC Journal, 2019, 70(5): 1734-1741.
|
3 |
INGEN HOUSZ E M R M, OOMS G, HENKES R A W M, et al. A comparison between numerical predictions and experimental results for horizontal core-annular flow with a turbulent annulus[J]. International Journal of Multiphase Flow, 2017, 95: 271-282.
|
4 |
高梦忱, 吴军, 刘小川, 等. 垂直管道内油-水两相环状流的流动特征[J]. 水动力学研究与进展A辑, 2014, 29(2): 225-231.
|
|
GAO M C, WU J, LIU X C, et al. Investigation on the performance of oil-water two-phase core annular flow in vertical pipes[J]. Chinese Journal of Hydrodynamics, 2014, 29(2): 225-231.
|
5 |
HU H L, JING J Q, TAN J T, et al. Flow patterns and pressure gradient correlation for oil-water core-annular flow in horizontal pipes[J]. Experimental and Computational Multiphase Flow, 2020, 2(2): 99-108.
|
6 |
JING J Q, DU M J, YIN R, et al. Numerical study on two-phase flow characteristics of heavy oil-water ring transport boundary layer[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107173.
|
7 |
JING J Q, YIN X Y, MASTOBAEV B N, et al. Experimental study on highly viscous oil-water annular flow in a horizontal pipe with 90° elbow[J]. International Journal of Multiphase Flow, 2021, 135: 103499.
|
8 |
敬加强, 尹晓云, MASTOBAEV B N, 等. 水平管内水环输送模拟稠油减阻特性[J]. 化工进展, 2021, 40(2): 635-641.
|
|
JING J Q, YIN X Y, MASTOBAEV B N, et al. Drag reduction characteristics of water annulus transportation of simulated heavy oil in horizontal pipeline[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 635-641.
|
9 |
尹晓云, 敬加强, 孙杰, 等. 水平管内黏稠油水环输送管道停输再启动特性[J]. 石油机械, 2022, 50(4): 124-129.
|
|
YIN X Y, JING J Q, SUN J, et al. Shutdown and restart characteristics on water ring transfer of heavy oil in horizontal pipeline[J]. China Petroleum Machinery, 2022, 50(4): 124-129.
|
10 |
SUN J, GUO L J, FU J Q, et al. A new model for viscous oil-water eccentric core annular flow in horizontal pipes[J]. International Journal of Multiphase Flow, 2022, 147: 103892.
|
11 |
TAN J T, HU H L, VAHAJI S, et al. Effects of drag-reducing polymers on the flow patterns, pressure gradients, and drag-reducing rates of horizontal oil-water flows[J]. International Journal of Multiphase Flow, 2022, 153: 104136.
|
12 |
YIN X Y, LI J, WEN M, et al. Study on the hydrodynamic performance and stability characteristics of oil-water annular flow through a 90° elbow pipe[J]. Sustainability, 2023, 15(8): 6785.
|
13 |
尹晓云, 苏明, 周鑫, 等. 水平管内黏稠油水环输送的稳定性[J]. 西南石油大学学报(自然科学版), 2023, 45(2): 107-116.
|
|
YIN X Y, SU M, ZHOU X, et al. Stability of water annulus transportation of heavy oil in horizontal pipelinel[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(2): 107-116.
|
14 |
GUDALA M, BANERJEE S, KUMAR A, et al. Rheological modeling and drag reduction studies of Indian heavy crude oil in presence of novel surfactant[J]. Petroleum Science and Technology, 2017, 35(24): 2287-2295.
|
15 |
ABUBAKAR A, AL-WAHAIBI T, AL-HASHMI A R, et al. Influence of drag-reducing polymer on flow patterns, drag reduction and slip velocity ratio of oil-water flow in horizontal pipe[J]. International Journal of Multiphase Flow, 2015, 73: 1-10.
|
16 |
SUN J, JING J Q, BRAUNER N, et al. An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation[J]. Journal of Industrial and Engineering Chemistry, 2018: 68: 99-108.
|
17 |
王帅, 敬加强, 宋学华, 等. 稠油乳状液屈服特性及环道启动压力预测[J]. 化工进展, 2019, 38(9): 4020-4028.
|
|
WANG S, JING J Q, SONG X H, et al. Yield characteristics of heavy oil emulsion and prediction for pipeline start-up pressure[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4020-4028.
|
18 |
AL-WAHAIBI T, ABUBAKAR A, AL-HASHMI A R, et al. Energy analysis of oil-water flow with drag-reducing polymer in different pipe inclinations and diameters[J]. Journal of Petroleum Science and Engineering, 2017, 149: 315-321.
|
19 |
ASIDIN M A, SUALI E, JUSNUKIN T, et al. Review on the applications and developments of drag reducing polymer in turbulent pipe flow[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1921-1932.
|
20 |
VARNASERI M, PEYGHAMBARZADEH S M. The effect of polyacrylamide drag reducing agent on friction factor and heat transfer coefficient in laminar, transition and turbulent flow regimes in circular pipes with different diameters[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119815.
|
21 |
AL-YAARI M, SOLEIMANI A, ABU-SHARKH B, et al. Effect of drag reducing polymers on oil-water flow in a horizontal pipe[J]. International Journal of Multiphase Flow, 2009, 35: 516-524.
|
22 |
EDOMWONYI-OTU L C, DOSUMU A I, YUSUF N. Effect of oil on the performance of biopolymers as drag reducers in fresh water flow[J]. Heliyon, 2021, 7(3): e06535.
|
23 |
EDOMWONYI-OTU L C, CHINAUD M, ANGELI P. Effect of drag reducing polymer on horizontal liquid-liquid flows[J]. Experimental Thermal and Fluid Science, 2015, 64: 164-174.
|
24 |
ESHRATI M, AL-HASHMI A R, AL-WAHAIBI T, et al. Drag reduction using high molecular weight polyacrylamides during multiphase flow of oil and water: A parametric study[J]. Journal of Petroleum Science and Engineering, 2015, 135: 403-409.
|
25 |
GRASSI B, STRAZZA D, POESIO P. Experimental validation of theoretical models in two-phase high-viscosity ratio liquid-liquid flows in horizontal and slightly inclined pipes[J]. International Journal of Multiphase Flow, 2008, 34(10): 950-965.
|
26 |
SOTGIA G, TARTARINI P, STALIO E. Experimental analysis of flow regimes and pressure drop reduction in oil-water mixtures[J]. International Journal of Multiphase Flow, 2008, 34(12): 1161-1174.
|
27 |
CAVICCHIO C A M, BIAZUSSI J L, DE CASTRO M S, et al. Experimental study of viscosity effects on heavy crude oil-water core-annular flow pattern[J]. Experimental Thermal and Fluid Science, 2018, 92: 270-285.
|
28 |
MOHAMMADTABAR M, SANDERS R S, GHAEMI S. Viscoelastic properties of flexible and rigid polymers for turbulent drag reduction[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 283: 104347.
|
29 |
ABUBAKAR A, AL-HASHMI A R, AL-WAHAIBI T, et al. Performance of a drag-reducing polymer in horizontal and downward-inclined oil-water flow[J]. Chemical Engineering Research and Design, 2015, 104: 237-246.
|
30 |
吕宇玲, 丁慎圆, 何利民, 等. 聚丙烯酰胺水溶液管道流动特性研究[J]. 化工进展, 2014, 33(10): 2592-2597, 2624.
|
|
LYU Y L, DING S Y, HE L M, et al. Flow characteristics of polyacrylamide solution in a pipeline[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2592-2597, 2624.
|
31 |
AL-WAHAIBI T, SMITH M, ANGELI P. Effect of drag-reducing polymers on horizontal oil-water flows[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 334-346.
|
32 |
YUSUF N, AL-WAHAIBI T, AL-WAHAIBI Y, et al. Experimental study on the effect of drag reducing polymer on flow patterns and drag reduction in a horizontal oil-water flow[J]. International Journal of Heat and Fluid Flow, 2012, 37: 74-80.
|
33 |
SOLEIMANI A, AL-SARKHI A, HANRATTY T J. Effect of drag-reducing polymers on pseudo-slugs—Interfacial drag and transition to slug flow[J]. International Journal of Multiphase Flow, 2002, 28(12): 1911-1927.
|
34 |
李家元, 梁长青, 张冬敏, 等. 黏稠油水环输送的稳定性[J]. 油气储运, 1988, 7(6): 22-29.
|
|
LI J Y, LIANG C Q, ZHANG D M, et al. The stability of transporting viscous oil in water ring[J]. Oil & Gas Storage and Transportation, 1988, 7(6): 22-29.
|
35 |
ABUBAKAR A, AL-WAHAIBI T, AL-WAHAIBI Y, et al. Roles of drag reducing polymers in single- and multi-phase flows[J]. Chemical Engineering Research and Design, 2014, 92(11): 2153-2181.
|
36 |
AL-WAHAIBI T, AL-WAHAIBI Y, AL-AJMI A, et al. Experimental investigation on the performance of drag reducing polymers through two pipe diameters in horizontal oil-water flows[J]. Experimental Thermal and Fluid Science, 2013, 50: 139-146.
|