Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6535-6543.DOI: 10.16085/j.issn.1000-6613.2023-0132
• Resources and environmental engineering • Previous Articles
HU Yuying1,2(), WANG Xin1, ZHANG Shihao1, HU Fengping1, WANG Chuqiao1, WU Jing2, XU Li3, XU Gaoping3
Received:
2023-02-03
Revised:
2023-05-31
Online:
2024-01-08
Published:
2023-12-25
Contact:
HU Yuying
胡玉瑛1,2(), 王鑫1, 张世豪1, 胡锋平1, 汪楚乔1, 吴静2, 许莉3, 许高平3
通讯作者:
胡玉瑛
作者简介:
胡玉瑛(1992—),女,博士,副教授,研究方向为有机废弃物处理处置。E-mail:hu_yuying@foxmail.com。
基金资助:
CLC Number:
HU Yuying, WANG Xin, ZHANG Shihao, HU Fengping, WANG Chuqiao, WU Jing, XU Li, XU Gaoping. Research progress on the visualization of flow field of anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6535-6543.
胡玉瑛, 王鑫, 张世豪, 胡锋平, 汪楚乔, 吴静, 许莉, 许高平. 厌氧消化流场可视化技术研究进展[J]. 化工进展, 2023, 42(12): 6535-6543.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0132
流变模型 | 基质 | 温度/℃ | 含固率/% | 流变参数 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
K/Pa·s n | n | |||||||
Power law | 猪粪 | 35 | 20.02 | 4.80235 | 0.39060 | — | — | [ |
猪粪 | 17~24 | 20 | 41.1 | 0.34 | — | — | [ | |
15 | 3.4 | 0.42 | — | — | [ | |||
10 | 1.0 | 0.55 | — | — | [ | |||
猪粪 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 56.8 | 0.35 | — | — | [ | |||
奶牛粪便 | 17~24 | 15 | 22.9 | 0.41 | — | — | [ | |
10 | 2.6 | 0.42 | — | — | [ | |||
奶牛粪便 | 35 | 12.1 | 5.885 | 0.367 | — | — | [ | |
17~24 | 15 | 31.3 | 0.3 | — | — | [ | ||
家禽粪便 | 17~24 | 20 | 0.9 | 0.43 | — | — | [ | |
15 | 1.7 | 0.41 | — | — | [ | |||
10 | 1.2 | 0.37 | — | — | [ | |||
家禽粪便 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 35.4 | 0.29 | — | — | [ | |||
H-B | 猪粪 | 35 | 20.02 | 4.68951 | 0.39362 | 0.28068 | — | [ |
污泥 | 25 | 4 | 3.6251 | 0.2722 | 1.0059 | — | [ | |
污泥 | — | 0.85 | 6.8873 | 1.3602 | 0.1722 | — | [ | |
Bingham | 猪粪 | 35 | 20.02 | — | — | 22.12129 | 0.06662 | [ |
污泥 | 25 | 4 | — | — | 11.0712 | 0.0022 | [ | |
污泥 | — | 0.85 | — | — | -0.5705 | 0.0085 | [ | |
污泥 | 20 | 6.01 | — | — | 62.9400 | 0.1635 | [ | |
污泥 | 20 | 4.48 | — | — | 28.2200 | 0.0662 | [ |
流变模型 | 基质 | 温度/℃ | 含固率/% | 流变参数 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
K/Pa·s n | n | |||||||
Power law | 猪粪 | 35 | 20.02 | 4.80235 | 0.39060 | — | — | [ |
猪粪 | 17~24 | 20 | 41.1 | 0.34 | — | — | [ | |
15 | 3.4 | 0.42 | — | — | [ | |||
10 | 1.0 | 0.55 | — | — | [ | |||
猪粪 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 56.8 | 0.35 | — | — | [ | |||
奶牛粪便 | 17~24 | 15 | 22.9 | 0.41 | — | — | [ | |
10 | 2.6 | 0.42 | — | — | [ | |||
奶牛粪便 | 35 | 12.1 | 5.885 | 0.367 | — | — | [ | |
17~24 | 15 | 31.3 | 0.3 | — | — | [ | ||
家禽粪便 | 17~24 | 20 | 0.9 | 0.43 | — | — | [ | |
15 | 1.7 | 0.41 | — | — | [ | |||
10 | 1.2 | 0.37 | — | — | [ | |||
家禽粪便 | 17~24 | 15 | 2.4 | 0.38 | — | — | [ | |
20 | 35.4 | 0.29 | — | — | [ | |||
H-B | 猪粪 | 35 | 20.02 | 4.68951 | 0.39362 | 0.28068 | — | [ |
污泥 | 25 | 4 | 3.6251 | 0.2722 | 1.0059 | — | [ | |
污泥 | — | 0.85 | 6.8873 | 1.3602 | 0.1722 | — | [ | |
Bingham | 猪粪 | 35 | 20.02 | — | — | 22.12129 | 0.06662 | [ |
污泥 | 25 | 4 | — | — | 11.0712 | 0.0022 | [ | |
污泥 | — | 0.85 | — | — | -0.5705 | 0.0085 | [ | |
污泥 | 20 | 6.01 | — | — | 62.9400 | 0.1635 | [ | |
污泥 | 20 | 4.48 | — | — | 28.2200 | 0.0662 | [ |
多相流模型 | 研究内容 | 流变模型 | 湍流模型 | 表征物理量 | 主要发现 | 参考文献 |
---|---|---|---|---|---|---|
单相流 | 开发考虑流变特性的CFD模型、研究底物均质化时间 | Power-Law | — | 均匀度指数 | 定义了新的用来确定底物完全混合时间的参数——均匀度指数 | [ |
基于CFD评价污泥厌氧消化反应器搅拌性能 | Power-Law | Standard k- | 流场、剪切速率、 流量准数 | 反应器内靠近底部、顶部和壁面区域以及搅拌轴附近容易形成死区 | [ | |
基于CFD研究活性炭投加的混合模式 | — | — | 流场 | 确定了120s/h的间歇式混合方式 | [ | |
分析比较消化器的泵送方式、反应器形状 | Power-Law | realizable k-ɛ | 流场、死区 | 研究表明机械导流管混合比外部泵循环更有效,并且蛋形消化器比圆柱形混合更有效 | [ | |
液固两相流 | 优化污泥厌氧消化搅拌条件 | — | RNG k- | 速度场、固相浓度场 | 通过功率和能耗分析确定了180r/min是该反应器的最佳混合转速 | [ |
气液两相流 | 研究厌氧单消化和共消化的混合模式和能耗 | Power-Law | Standard k- | 流场、功率准数 | 共消化比单一消化有更低的能耗和更高的净能量产出 | [ |
研究污泥流变特性对厌氧消化反应器性能的影响 | H-B | — | 流场、剪切速率 | H-B模型可以用于模拟非牛顿流体污泥,在高剪切速率下考虑使用Bingham模型 | [ | |
分析不同多相流模型、相间作用力对液相速度的影响 | Power-Law | k- RNG k- realizable k-ɛ | 速度场 | 欧拉双流体模型模拟的液相速度更接近于实际,相间作用力考虑升力和曳力组合时,模拟结果更可信 | [ | |
研究剪切力和叶轮设计对沼气产量的影响 | Power-Law | — | 速度场、混合时间 | 相比于传统涡轮状叶轮,使用双螺带状叶轮可以提高50%的甲烷产率 | [ | |
三相流 | 定量评估工业规模下沼气混合厌氧反应器的混合质量 | Power-LawH-B | — | 死区、均匀度指数 | 首次提出浓度区间相对比例来定量评估混合质量 | [ |
多相流模型 | 研究内容 | 流变模型 | 湍流模型 | 表征物理量 | 主要发现 | 参考文献 |
---|---|---|---|---|---|---|
单相流 | 开发考虑流变特性的CFD模型、研究底物均质化时间 | Power-Law | — | 均匀度指数 | 定义了新的用来确定底物完全混合时间的参数——均匀度指数 | [ |
基于CFD评价污泥厌氧消化反应器搅拌性能 | Power-Law | Standard k- | 流场、剪切速率、 流量准数 | 反应器内靠近底部、顶部和壁面区域以及搅拌轴附近容易形成死区 | [ | |
基于CFD研究活性炭投加的混合模式 | — | — | 流场 | 确定了120s/h的间歇式混合方式 | [ | |
分析比较消化器的泵送方式、反应器形状 | Power-Law | realizable k-ɛ | 流场、死区 | 研究表明机械导流管混合比外部泵循环更有效,并且蛋形消化器比圆柱形混合更有效 | [ | |
液固两相流 | 优化污泥厌氧消化搅拌条件 | — | RNG k- | 速度场、固相浓度场 | 通过功率和能耗分析确定了180r/min是该反应器的最佳混合转速 | [ |
气液两相流 | 研究厌氧单消化和共消化的混合模式和能耗 | Power-Law | Standard k- | 流场、功率准数 | 共消化比单一消化有更低的能耗和更高的净能量产出 | [ |
研究污泥流变特性对厌氧消化反应器性能的影响 | H-B | — | 流场、剪切速率 | H-B模型可以用于模拟非牛顿流体污泥,在高剪切速率下考虑使用Bingham模型 | [ | |
分析不同多相流模型、相间作用力对液相速度的影响 | Power-Law | k- RNG k- realizable k-ɛ | 速度场 | 欧拉双流体模型模拟的液相速度更接近于实际,相间作用力考虑升力和曳力组合时,模拟结果更可信 | [ | |
研究剪切力和叶轮设计对沼气产量的影响 | Power-Law | — | 速度场、混合时间 | 相比于传统涡轮状叶轮,使用双螺带状叶轮可以提高50%的甲烷产率 | [ | |
三相流 | 定量评估工业规模下沼气混合厌氧反应器的混合质量 | Power-LawH-B | — | 死区、均匀度指数 | 首次提出浓度区间相对比例来定量评估混合质量 | [ |
16 | FENG Xianfeng, TANG Bing, Liying BIN, et al. Rheological behavior of the sludge in a long-running anaerobic digestor: Essential factors to optimize the operation[J]. Biochemical Engineering Journal, 2016, 114: 147-154. |
17 | JIANG Jiankai, WU Jing, PONCIN Souhila, et al. Rheological characteristics of highly concentrated anaerobic digested sludge[J]. Biochemical Engineering Journal, 2014, 86: 57-61. |
18 | LIU Gangjin, LIU Yi, WANG Zhiyong, et al. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure[J]. Waste Management, 2015, 38: 449-454. |
19 | 董登志, 张静思, 吴志根, 等. 高含固污泥临界剪切应力影响因素的研究[J]. 西安交通大学学报, 2017, 51(11): 57-62. |
DONG Dengzhi, ZHANG Jingsi, WU Zhigen, et al. Effect of high-solid sewage sludge on critical shear stress[J]. Journal of Xi’an Jiaotong University, 2017, 51(11): 57-62. | |
20 | 张严之, 王卉, 张翼, 等. 高含固污泥中影响因素对流变特性的影响[J]. 环境工程学报, 2016, 10(12): 7255-7259. |
ZHANG Yanzhi, WANG Hui, ZHANG Yi, et al. Effects of influence factors of high-solids sludge on rheological characteristics[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7255-7259. | |
21 | WEI P, UIJTTEWAAL W, VAN LIER J B, et al. Impacts of shearing and temperature on sewage sludge: Rheological characterisation and integration to flow assessment[J]. Science of the Total Environment, 2021, 774: 145005. |
22 | 曹秀芹, 尹伟齐, 赵振东. 不同含水率下污泥流变模型的显著性水平分析[J]. 北京工业大学学报, 2017, 43(1): 150-157. |
CAO Xiuqin, YIN Weiqi, ZHAO Zhendong. Analysis of the significant level of sludge rheological models with different moisture contents[J]. Journal of Beijing University of Technology, 2017, 43(1): 150-157. | |
23 | 曹秀芹, 王鑫, 蒋竹荷, 等. 高含固污泥在热水解-厌氧消化工艺中的流变特性分析[J]. 环境工程学报, 2017, 11(4): 2493-2498. |
CAO Xiuqin, WANG Xin, JIANG Zhuhe, et al. Analysis on rheological characterization of high solid sludge in process of thermal hydrolysis-anaerobic digestion[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2493-2498. | |
24 | BAUDEZ J C, MARKIS F, ESHTIAGHI N, et al. The rheological behaviour of anaerobic digested sludge[J]. Water Research, 2011, 45(17): 5675-5680. |
25 | LANDRY H, LAGUË C, ROBERGE M. Physical and rheological properties of manure products[J]. Applied Engineering in Agriculture, 2004, 20(3): 277-288. |
26 | WU Binxin. Advances in the use of CFD to characterize, design and optimize bioenergy systems[J]. Computers and Electronics in Agriculture, 2013, 93: 195-208. |
27 | 曹秀芹, 赵振东, 杨平, 等. 基于污泥流变特性对厌氧消化反应器的模拟研究[J]. 给水排水, 2016, 52(7): 36-41. |
CAO Xiuqin, ZHAO Zhendong, YANG Ping, et al. Simulation study on anaerobic digestion reactor based on rheological characteristics of sludge[J]. Water & Wastewater Engineering, 2016, 52(7): 36-41. | |
28 | CRESPÍ-LLORENS D, VICENTE P, VIEDMA A. Flow pattern of non-Newtonian fluids in reciprocating scraped surface heat exchangers[J]. Experimental Thermal and Fluid Science, 2016, 76: 306-323. |
29 | WU B, BIBEAU E L. Development of 3-D anaerobic digester heat transfer model for cold weather applications[J]. Transactions of the ASABE, 2006, 49(3): 749-757. |
30 | DAPELO Davide, BRIDGEMAN John. Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFD[J]. Bioresource Technology, 2018, 265: 480-489. |
31 | TERASHIMA Mitsuharu, GOEL Rajeev, KOMATSU Kazuya, et al. CFD simulation of mixing in anaerobic digesters[J]. Bioresource Technology, 2009, 100(7): 2228-2233. |
32 | 曹秀芹, 赵振东, 杨平, 等. 污泥厌氧消化反应器搅拌性能的CFD模拟[J]. 给水排水, 2016, 52(3): 137-141. |
CAO Xiuqin, ZHAO Zhendong, YANG Ping, et al. CFD simulation of stirring performance of sludge anaerobic digestion reactor[J]. Water & Wastewater Engineering, 2016, 52(3): 137-141. | |
33 | ZHANG Jingxin, QI Qiuxian, MAO Liwei, et al. Mixing strategies—Activated carbon nexus: Rapid start-up of thermophilic anaerobic digestion with the mesophilic anaerobic sludge as inoculum[J]. Bioresource Technology, 2020, 310: 123401. |
34 | WU Binxin. CFD simulation of mixing in egg-shaped anaerobic digesters[J]. Water Research, 2010, 44(5): 1507-1519. |
35 | 曹秀芹, 杜金海, 李彩斌, 等. 污泥厌氧消化搅拌条件的优化分析[J]. 环境科学与技术, 2015, 38(1): 100-105. |
CAO Xiuqin, DU Jinhai, LI Caibin, et al. Optimal analysis on the mixing condition of sludge in the process of anaerobic digestion[J]. Environmental Science & Technology, 2015, 38(1): 100-105. | |
36 | CRAIG K J, NIEUWOUDT M N, NIEMAND L J. CFD simulation of anaerobic digester with variable sewage sludge rheology[J]. Water Research, 2013, 47(13): 4485-4497. |
37 | 王乐, 樊敏, 詹翔宇, 等. 气体搅拌下厌氧消化反应器CFD数值模拟及模型研究[J]. 农业机械学报, 2018, 49(2): 305-312. |
WANG Le, FAN Min, ZHAN Xiangyu, et al. Numerical simulation and models of gas-stirred anaerobic digester by CFD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 305-312. | |
38 | CUI Minhua, ZHENG Zhiyong, YANG Meng, et al. Revealing hydrodynamics and energy efficiency of mixing for high-solid anaerobic digestion of waste activated sludge[J]. Waste Management, 2021, 121: 1-10. |
39 | YU Liang, MA Jingwei, FREAR Craig, et al. Multiphase modeling of settling and suspension in anaerobic digester[J]. Applied Energy, 2013, 111: 28-39. |
40 | KARIM K, THOMA G J, AL-DAHHAN M H. Gas-lift digester configuration effects on mixing effectiveness[J]. Water Research, 2007, 41(14): 3051-3060. |
41 | 宋金礼, 陈贵军, 王娟. 发酵罐内固液两相流的数值模拟[J]. 节能, 2015, 34(5): 22-25. |
SONG Jinli, CHEN Guijun, WANG Juan. Numerical simulation of solid-liquid two-phase flow in fermentation tank[J]. Energy Conservation, 2015, 34(5): 22-25. | |
42 | 曹秀芹, 江坤, 尹伟齐, 等. 基于两相流模型污泥消化反应器内流场分析[J]. 环境科学与技术, 2018, 41(5): 120-125. |
1 | 孟晓山, 汤子健, 陈琳, 等. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
MENG Xiaoshan, TANG Zijian, CHEN Lin, et al. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. | |
2 | LEONZIO Grazia. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis[J]. Renewable Energy, 2018, 123: 578-589. |
3 | ZHANG Yuan, YU Guangren, YU Liang, et al. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion[J]. Bioresource Technology, 2016, 203: 166-172. |
4 | LEBRANCHU Aline, DELAUNAY Stéphane, MARCHAL Philippe, et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters[J]. Bioresource Technology, 2017, 245: 1139-1147. |
5 | 曹秀芹, 柴莲莲, 徐国庆, 等. 基于猪粪流变特性的厌氧消化反应器内的数值模拟[J]. 环境工程学报, 2020, 14(2): 498-505. |
CAO Xiuqin, CHAI Lianlian, XU Guoqing, et al. Numerical simulation in anaerobic digestion reactor based on rheological properties of pig manure[J]. Chinese Journal of Environmental Engineering, 2020, 14(2): 498-505. | |
6 | HURTADO F J, KAISER A S, ZAMORA B. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion[J]. Water Research, 2015, 71: 282-293. |
7 | HOFFMANN A C, SKORPEN Å, CHANG Y. Positron emission particle tracking and CFD investigation of hydrocyclones acting on liquids of varying viscosity[J]. Chemical Engineering Science, 2019, 200: 310-319. |
8 | LUO H, AL-DAHHAN M H. Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor[J]. Chemical Engineering Science, 2011, 66(5): 907-923. |
9 | 房洪芹. 双层斜叶组合桨搅拌槽内流体流场的数值模拟及PIV试验研究[D]. 镇江: 江苏大学, 2020. |
FANG Hongqin. Numerical simulation and PIV experimental study of fluid flow field in a stirred tank with double-layer inclined blade combined impellers[D]. Zhenjiang: Jiangsu University, 2020. | |
42 | CAO Xiuqin, JIANG Kun, YIN Weiqi, et al. Analysis of flow field in sludge digestion reactor based on two phase flow model[J]. Environmental Science & Technology, 2018, 41(5): 120-125. |
43 | WANG Xu, DING Jie, GUO Wanqian, et al. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation[J]. International Journal of Hydrogen Energy, 2010, 35(20): 10960-10966. |
44 | WEI P, MUDDE R F, UIJTTEWAAL W, et al. Characterising the two-phase flow and mixing performance in a gas-mixed anaerobic digester: Importance for scaled-up applications[J]. Water Research, 2019, 149: 86-97. |
45 | D’ BASTIANI C, ALBA J L, MAZZAROTTO G T, et al. Three-phase hydrodynamic simulation and experimental validation of an upflow anaerobic sludge blanket reactor[J]. Computers & Mathematics With Applications, 2021, 83: 95-110. |
46 | HAO Feilin, SHEN Mingwei. Development, simulation, and laboratory test of novel gas-solid-liquid separator for UASB/EGSB reactor of wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105217. |
47 | Jorge RAMÍREZ-MUÑOZ, Román GUADARRAMA-PÉREZ, Alejandro ALVARADO-LASSMAN, et al. CFD study of the hydrodynamics and biofilm growth effect of an anaerobic inverse fluidized bed reactor operating in the laminar regime[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104674. |
48 | WANG Xu, DING Jie, GUO Wanqian, et al. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation[J]. Bioresource Technology, 2010, 101(24): 9749-9757. |
49 | ZHANG J B, PONCIN S, WU J, et al. A multiscale approach for studying an anaerobic multiphase bioreactor[J]. Chemical Engineering Science, 2011, 66(14): 3423-3431. |
50 | WU J, ZHANG J B, JIANG Y, et al. Impacts of hydrodynamic conditions on sludge digestion in internal circulation anaerobic digester[J]. Process Biochemistry, 2012, 47(11): 1627-1632. |
51 | JIANG Jiankai, WU Jing, ZHANG Jinbai, et al. Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors[J]. Bioresource Technology, 2014, 155: 1-7. |
52 | ALBERINI F, LIU L, STITT E H, et al. Comparison between 3-D-PTV and 2-D-PIV for determination of hydrodynamics of complex fluids in a stirred vessel[J]. Chemical Engineering Science, 2017, 171: 189-203. |
53 | GUNTZBURGER Yoann, FONTAINE André, FRADETTE Louis, et al. An experimental method to evaluate global pumping in a mixing system: Application to the MaxblendTM for Newtonian and non-Newtonian fluids[J]. Chemical Engineering Journal, 2013, 214: 394-406. |
10 | WU Binxin. CFD simulation of mixing for high-solids anaerobic digestion[J]. Biotechnology and Bioengineering, 2012, 109(8): 2116-2126. |
11 | HU Yuying, WU Jing, PONCIN Souhila, et al. Flow field investigation of high solid anaerobic digestion by particle image velocimetry (PIV)[J]. Science of the Total Environment, 2018, 626: 592-602. |
12 | 王彦祥, 何琴, 李蕾, 等. 餐厨垃圾中温干式厌氧消化污泥的流变特性研究[J]. 环境科学学报, 2014, 34(12): 3171-3178. |
WANG Yanxiang, HE Qin, LI Lei, et al. Rheological characteristic analysis of dry anaerobic digestion sludge of food waste under mesophilic conditions[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3171-3178. | |
13 | 牛耕芜, 倪哲. 鸡粪接种污泥联合厌氧发酵过程中的流变特性研究[J]. 沈阳农业大学学报, 2020, 51(2): 245-249. |
NIU Gengwu, NI Zhe. Rheological study on anaerobic co-digestion of chicken manure and sludges[J]. Journal of Shenyang Agricultural University, 2020, 51(2): 245-249. | |
14 | TIAN Libin, SHEN Fei, YUAN Hairong, et al. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion[J]. Bioresource Technology, 2014, 168: 86-91. |
15 | 刘青青, 曹秀芹, 王鑫, 等. 总固体和温度对污泥流变特性的影响[J]. 科学技术与工程, 2018, 18(3): 379-384. |
LIU Qingqing, CAO Xiuqin, WANG Xin, et al. Effect of TS and temperature on rheological properties of sludge[J]. Science Technology and Engineering, 2018, 18(3): 379-384. | |
54 | KHATIBI M, TIME R W, RABENJAFIMANANTSOA H A. Particles falling through viscoelastic non-Newtonian flows in a horizontal rectangular channel analyzed with PIV and PTV techniques[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 235: 143-153. |
55 | 曹秀芹, 袁海光, 赵振东, 等. 黄原胶溶液模拟消化污泥流动性能分析[J]. 农业工程学报, 2017, 33(15): 260-265. |
CAO Xiuqin, YUAN Haiguang, ZHAO Zhendong, et al. Analysis on xanthan gum solution to simulate flow performance of digestion sludge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 260-265. | |
56 | SINDALL Rebecca C, DAPELO Davide, LEADBEATER Tom, et al. Positron emission particle tracking (PEPT): A novel approach to flow visualisation in lab-scale anaerobic digesters[J]. Flow Measurement and Instrumentation, 2017, 54: 250-264. |
57 | PARKER D J, BROADBENT C J, FOWLES P, et al. Positron emission particle tracking—A technique for studying flow within engineering equipment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 326(3): 592-607. |
58 | Mark AL-SHEMMERI, Kit WINDOWS-YULE, Estefania LOPEZ-QUIROGA, et al. Coffee bean particle motion in a spouted bed measured using positron emission particle tracking (PEPT)[J]. Journal of Food Engineering, 2021, 311: 110709. |
59 | DAPELO D, TRUNK R, KRAUSE M J, et al. Towards Lattice-Boltzmann modelling of unconfined gas mixing in anaerobic digestion[J]. Computers & Fluids, 2019, 180: 11-21. |
[1] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[4] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[5] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[6] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[7] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[8] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[9] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[10] | ZHANG Chengsong, ZHANG Jing, GONG Bin, LI Mingyang, YUAN Jiaxin, LI Hongye. Vibration characteristics of self-priming jet flexible impeller [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738. |
[11] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[12] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[13] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[14] | YU Yanfang, LI Yu, MENG Huibo, LIU Huanchen. Enhancement of gas-liquid flow mixing and mass transfer in Lightnin static mixer [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6180-6190. |
[15] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |