Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6641-6648.DOI: 10.16085/j.issn.1000-6613.2023-0117
• Resources and environmental engineering • Previous Articles
DONG Youqing1(), TANG Aixing1, LIU Youyan1, LI Qingyun1,2(
)
Received:
2023-01-31
Revised:
2023-03-07
Online:
2024-01-08
Published:
2023-12-25
Contact:
LI Qingyun
通讯作者:
李青云
作者简介:
董友情(1998—),女,硕士研究生,研究方向为化学工程。E-mail:17853576685@163.com。
基金资助:
CLC Number:
DONG Youqing, TANG Aixing, LIU Youyan, LI Qingyun. The malate dehydrogenase synergistically hydrolyzes cellulose with cellulase: Theoretical analysis and experimental investigation[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6641-6648.
董友情, 唐爱星, 刘幽燕, 李青云. 苹果酸脱氢酶协同纤维素酶水解纤维素:理论分析与实验[J]. 化工进展, 2023, 42(12): 6641-6648.
1 | LI Meichun, WU Qinglin, MOON Robert J, et al. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications[J]. Advanced Materials, 2021, 33(21): e2006052. |
2 | DUTTA Saikat, WU Kevin C W. Enzymatic breakdown of biomass: Enzyme active sites, immobilization, and biofuel production[J]. Green Chemistry, 2014, 16(11): 4615-4626. |
3 | LYND Lee R, VAN ZYL Willem H, MCBRIDE John E, et al. Consolidated bioprocessing of cellulosic biomass: An update[J]. Current Opinion in Biotechnology, 2005, 16(5): 577-583. |
4 | ZHANG Peiqian, MA Yuanyuan, CUI Mei, et al. Effect of sugars on the real-time adsorption of expansin on cellulose[J]. Biomacromolecules, 2020, 21(5): 1776-1784. |
5 | LEE Dae-Seok, LEE Yoon-Gyo, CHO Eun Jin, et al. Hydrolysis pattern analysis of xylem tissues of woody plants pretreated with hydrogen peroxide and acetic acid: Rapid saccharification of softwood for economical bioconversion[J]. Biotechnology for Biofuels, 2021, 14(1): 37. |
6 | DU Liping, CUI Xinyu, LI Hongxuan, et al. Enhancing the enzymatic hydrolysis efficiency of lignocellulose assisted by artificial fusion enzyme of swollenin-xylanase[J]. Industrial Crops and Products, 2021, 173:114106. |
7 | 刘南, 祁峰, 李力, 等. 纤维素降解辅助蛋白及其作用机理研究进展[J]. 化工进展, 2018, 37(3): 1118-1129. |
LIU Nan, QI Feng, LI Li, et al. Auxiliary proteins for boosting enzymatic hydrolysis of cellulose and the action mechanisms[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1118-1129. | |
8 | ZHANG Ruiqin. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3229-3243. |
9 | KIM In Jung, LEE Hee Jin, CHOI In-Geol, et al. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase[J]. Applied Microbiology and Biotechnology, 2014, 98(20): 8469-8480. |
10 | KIM Ji Eun, Sung Il JOO, SEO Ji Hyun, et al. Antioxidant and α-glucosidase inhibitory effect of Tartary buckwheat extract obtained by the treatment of different solvents and enzymes[J]. Journal of the Korean Society of Food Science and Nutrition, 2009, 38(8): 989-995. |
11 | VARROT Annabelle, Vivian L Y YIP, LI Yunsong, et al. NAD+ and metal-ion dependent hydrolysis by family 4 glycosidases: Structural insight into specificity for phospho-β-D-glucosides[J]. Journal of Molecular Biology, 2005, 346(2): 423-435. |
12 | BOUCHER Jeffrey I, JACOBOWITZ Joseph R, BECKETT Brian C, et al. An atomic-resolution view of neofunctionalization in the evolution of api complexan lactate dehydrogenases[J]. eLife, 2014, 3:02304. |
13 | HALL Michael D, LEVITT David G, BANASZAK Leonard J. Crystal structure of Escherichia coli malate dehydrogenase[J]. Journal of Molecular Biology, 1992, 226(3): 867-882. |
14 | BURLEY Stephen K, BHIKADIYA Charmi, BI Chunxiao, et al. RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D[J]. Protein Science: a Publication of the Protein Society, 2022, 31(1): 187-208. |
15 | ROBERT Xavier, GOUET Patrice. Deciphering key features in protein structures with the new ENDscript server[J]. Nucleic Acids Research, 2014, 42(W1): W320-W324. |
16 | YUAN Shuguang, H C Stephen CHAN, HU Zhenquan. Using PyMOL as a platform for computational drug design[J].WIREs Computational Molecular Science, 2017, 7(2):e1298. |
17 | LODGE Jacinta A, MAIER Timm, LIEBL Wolfgang, et al. Crystal structure of thermotoga maritima α-glucosidase AglA defines a new clan of NAD+-dependent glycosidases[J]. Journal of Biological Chemistry, 2003, 278(21): 19151-19158. |
18 | NCBI Resource Coordinators. Database resources of the national center for biotechnology information[J]. Nucleic Acids Research, 2018, 46(D1): D8-D13. |
19 | FORLI Stefano, HUEY Ruth, PIQUE Michael E, et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite[J]. Nature Protocols, 2016, 11(5): 905-919. |
20 | MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31(3): 426-428. |
21 | LI Z, XIAN L, LI Q, et al. Study on the properties of xylanase from Streptomyces ipomoeae synergistically digesting sugarcane bagasse[J]. Renesable Energy Resources, 2021, 39(12): 1576-1582. |
22 | KIM Seong H, LEE Christopher M, Kafle Kabindra. Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG[J]. Korean Journal of Chemical Engineering, 2013, 30(12): 2127-2141. |
23 | MITCHELL Alex L, ATTWOOD Teresa K, BABBITT Patricia C, et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations[J]. Nucleic Acids Research, 2019, 47(D1): D351-D360. |
24 | ROSADI Imam, INDRADY Feldiana Tuesrilia, KARINA Karina, et al. Evaluation effects of ascorbic acid leads to activate and induce osteogenic protein marker expression: In silico and in-vitro study[J]. Biomedical Research and Therapy, 2022, 9(1): 4832-4841. |
25 | DING Sunjia, LIU Xiaoqing, HAKULINEN Nina, et al. Boosting enzymatic degradation of cellulose using a fungal expansin: Structural insight into the pretreatment mechanism[J]. Bioresource Technology, 2022, 358: 127434. |
26 | LI Rong, SUN Yunze, ZHOU Yihao, et al. A novel decrystallizing protein CxEXL22 from Arthrobotrys sp. CX1 capable of synergistically hydrolyzing cellulose with cellulases[J]. Bioresources and Bioprocessing, 2021, 8(1): 1-12. |
27 | KIM Eun Sil, LEE Hee Jin, BANG Won Gi, et al. Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose[J]. Biotechnology and Bioengineering, 2009, 102(5): 1342-1353. |
28 | QIN Yimin, TAO Heng, LIU Youyan, et al. A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose[J]. Journal of Biotechnology, 2013, 168(1): 24-31. |
29 | Chir JIUN-LY, Wan CHIN-FENG, Chou CHIEN-HUNG, et al. Hydrolysis of cellulose in synergistic mixtures of β-glucosidase and endo/exocellulase Cel9A from Thermobifida fusca [J]. Biotechnology Letters, 2011, 33(4): 777-782. |
30 | 王修胜, 于占春, 张小希, 等. 工业纤维素酶水解效率的影响因素分析[J]. 生物质化学工程, 2010, 44(5): 1-7. |
WANG Xiusheng, YU Zhanchun, ZHANG Xiaoxi, et al. Analysis on effect factors of hydrolysis efficiency of industrial cellulases[J]. Biomass Chemical Engineering, 2010, 44(5): 1-7. | |
31 | MA Xiaoyu, GAO Ming, LI Yuan, et al. Production of cellulase by Aspergillus niger through fermentation of spent mushroom substance: Glucose inhibition and elimination approaches[J]. Process Biochemistry, 2022, 122: 26-35. |
32 | SEGATO Fernando, DAMÁSIO André R L, DE LUCAS Rosymar C, et al. Genomics review of holocellulose deconstruction by aspergilli [J]. Microbiology and Molecular Biology Reviews, 2014, 78(4): 588-613. |
33 | WOOD T M, MCCRAE S I. The purification and properties of the C1 component of Trichoderma koningii cellulase[J]. The Biochemical Journal, 1972, 128(5): 1183-1192. |
34 | SALOHEIMO Markku, PALOHEIMO Marja, HAKOLA Satu, et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials[J]. European Journal of Biochemistry, 2002, 269(17): 4202-4211. |
35 | BLUMER-SCHUETTE Sara E, BROWN Steven D, SANDER Kyle B, et al. Thermophilic lignocellulose deconstruction[J]. FEMS Microbiology Reviews, 2014, 38(3): 393-448. |
36 | CIOLACU D, CIOLACU F, POPA V. Amorphous cellulose—Structure and characterization[J]. Cellulose Chemistry and Technology, 2011, 45(1/2): 13-21. |
37 | HAN Yejun, CHEN Hongzhang. Synergism between corn stover protein and cellulase[J]. Enzyme and Microbial Technology, 2007, 41(5): 638-645. |
[1] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[2] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[3] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[4] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing aliphatic acids via pressurized hydrolysis of soapstock assisted by ultrasound [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 409-416. |
[5] | SUN Peiqin, CHEN Yanqing, KONG Xiangbei, JIN Manping, LIU Fufang. Application of acetic anhydride and water in the confirmation of chemical reaction calorimetry [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 91-96. |
[6] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[7] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
[8] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[9] | ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313. |
[10] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
[11] | XIE Li, LI Xiufen. Effect of exopolysaccharide content on alkaline-thermal hydrolysis process of dissolved sludge protein and hydrolysate solid-liquid separation performance [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4580-4586. |
[12] | WANG Chaochao, WU Yiling, CHEN Jiaqiao, CAI Tianning, LIU Wenru, LI Xiang, WU Peng. A novel anaerobic hydrolysis acidification-partial denitrification anaerobic ammonia oxidation process for advanced nitrogen removal from simulated domestic and nitrate-containing wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3890-3899. |
[13] | ZHUANG Yuting, WANG Jianhua, XIANG Zhiyan, ZHAO Juan, XU Qiong, LIU Xianxiang, YIN Dulin. Research progress in preparation and kinetics of γ-valerolactone synthesis from hemicellulose and its derivatives [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3519-3533. |
[14] | SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037. |
[15] | YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |