Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6419-6428.DOI: 10.16085/j.issn.1000-6613.2023-0100
• Materials science and technology • Previous Articles
ZHANG Zhehao1,2(), DING Yudong1,2(), ZHU Xun1,2, WANG Hong1,2, CHENG Min1,2, LIAO Qiang1,2
Received:
2023-01-29
Revised:
2023-03-23
Online:
2024-01-08
Published:
2023-12-25
Contact:
DING Yudong
张浙豪1,2(), 丁玉栋1,2(), 朱恂1,2, 王宏1,2, 程旻1,2, 廖强1,2
通讯作者:
丁玉栋
作者简介:
张浙豪(1997—),男,硕士研究生,研究方向为强化传热传质。E-mail:20163295@cqu.edu.com。
基金资助:
CLC Number:
ZHANG Zhehao, DING Yudong, ZHU Xun, WANG Hong, CHENG Min, LIAO Qiang. Recent progress on thermally conductive insulating composites with three-dimensional filler network[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6419-6428.
张浙豪, 丁玉栋, 朱恂, 王宏, 程旻, 廖强. 具有三维填料网络的导热绝缘复合材料研究进展[J]. 化工进展, 2023, 42(12): 6419-6428.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0100
1 | HE Ziqiang, YAN Yunfei, ZHANG Zhien. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review[J]. Energy, 2021, 216: 119223. |
2 | LEONG Kin Yuen, CHEW Sue Ping, GURUNATHAN Balamurugan A, et al. An experimental approach to investigate thermal performance of paraffin wax and 1-hexadecanol based heat sinks for cooling of electronic system[J]. International Communications in Heat and Mass Transfer, 2019, 109: 104365. |
3 | ZHANG Yin, CHEN Min. Cloud based 5G wireless networks[M]. Cham, Switzerland: Springer International Publishing, 2016. |
4 | BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28. |
5 | FANG Haoming, BAI Shulin, WONG Ching Ping. “White graphene” - hexagonal boron nitride based polymeric composites and their application in thermal management[J]. Composites Communications, 2016, 2: 19-24. |
6 | CHEN Hongyu, GINZBURG Valeriy V, YANG Jian, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. |
7 | RUAN Kunpeng, ZHONG Xiao, SHI Xuetao, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review[J]. Materials Today Physics, 2021, 20: 100456. |
8 | 谢宇宁, 雷华, 石倩. 电子封装用导热环氧树脂基复合材料的研究进展[J]. 工程塑料应用, 2018, 46(12): 143-147. |
XIE Yuning, LEI Hua, SHI Qian. Research progress of thermal conductive epoxy matrix composites for electronic packaging[J]. Engineering Plastics Application, 2018, 46(12): 143-147. | |
9 | KUANG Zhiqiao, CHEN Yulong, LU Yonglai, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small, 2015, 11(14): 1655-1659. |
10 | MEHRA Nitin, JESKE Madelyn, YANG Xutong, et al. Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction[J]. ACS Applied Polymer Materials, 2019, 1(6): 1291-1300. |
11 | RUAN Kunpeng, GUO Yongqiang, GU Junwei. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness[J]. Macromolecules, 2021, 54(10): 4934-4944. |
12 | LI Yuzhan, BADRINARAYANAN Prashanth, KESSLER Michael R. Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization[J]. Polymer, 2013, 54(12): 3017-3025. |
13 | GIANG Thanhkieu, KIM Jinhwan. Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy-alumina composites[J]. Journal of Electronic Materials, 2017, 46(1): 627-636. |
67 | XIAO Chao, CHEN Lu, TANG Yunlu, et al. Enhanced thermal conductivity of silicon carbide nanowires (SiC w )/epoxy resin composite with segregated structure[J]. Composites Part A, Applied Science and Manufacturing, 2019, 116: 98-105. |
68 | XUE Yanming, ZHOU Xin, ZHAN Tianzhuo, et al. Densely interconnected porous BN frameworks for multifunctional and isotropically thermoconductive polymer composites[J]. Advanced Functional Materials, 2018, 28(29): 1801205. |
69 | WANG Xiongwei, WU Peiyi. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading[J]. Chemical Engineering Journal, 2018, 348: 723-731. |
70 | LEE Seonmin, KIM Jooheon. Thermally conductive 3D binetwork structured aggregated boron nitride/Cu-foam/polymer composites[J]. Synthetic Metals, 2020, 270: 116587. |
71 | FENG Yancong, CHEN Xin, LI Yongrui, et al. Comparison with experiment, model, and simulation for thermal conductive mechanism of polymer composites without particle network[J]. Macromolecular Chemistry and Physics, 2021, 222(19): 2100200. |
72 | 毋克凡, NUANYAI Pontarit, 张虎, 等. 树脂基碳纤维复合材料各向异性导热系数研究[J]. 工程热物理学报, 2021, 42(5): 1282-1287. |
WU Kefan, NUANYAI Pontarit, ZHANG Hu, et al. Anisotropic thermal conductivity of carbon-fiber/epoxy composites[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1282-1287. | |
73 | ZHANG Yong, YANG Fei, YU Chen, et al. Improved thermal properties of three-dimensional graphene network filled polymer composites[J]. Journal of Electronic Materials, 2022, 51(1): 420-425. |
74 | YU Huitao, GUO Peili, QIN Mengmeng, et al. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure[J]. Composites Science and Technology, 2022, 222: 109406. |
14 | WANG Yunjing, XIA Shuang, LI Hao, et al. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Advanced Functional Materials, 2019, 29(38): 1903876. |
15 | ZHU Yingke, ZHU Yujie, HUANG Xingyi, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials, 2019, 9(36): 1901826. |
16 | YAO Yimin, SUN Jiajia, ZENG Xiaoliang, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity[J]. Small, 2018, 14(13): 1704044. |
17 | HE Bo, MORTAZAVI Bohayra, ZHUANG Xiaoying, et al. Modeling Kapitza resistance of two-phase composite material[J]. Composite Structures, 2016, 152: 939-946. |
18 | YU Aiping, RAMESH Palanisamy, SUN Xiaobo, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20(24): 4740-4744. |
19 | GUO Hong, WANG Qin, LIU Jun, et al. Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes[J]. Applied Surface Science, 2019, 487: 379-388. |
20 | CAI Xinzhi, DONG Xuanzuo, Wanxin LYU, et al. Synergistic enhancement of thermal conductivity for low dielectric constant boron nitride-polytetrafluoroethylene composites by adding small content of graphene nanosheets[J]. Composites Communications, 2020, 17: 163-169. |
21 | HU Mingchang, FENG Jiyun, Ka Ming NG. Thermally conductive PP/AlN composites with a 3-D segregated structure[J]. Composites Science and Technology, 2015, 110: 26-34. |
22 | 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4): 760-766. |
WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 760-766. | |
23 | 袁立敏, 陈华, 冯鑫, 等. 填充型高导热绝缘材料研究综述[J]. 绝缘材料, 2017, 50(8): 29-33. |
YUAN Limin, CHEN Hua, FENG Xin, et al. Review of filled type high thermal conductive insulating materials[J]. Insulating Materials, 2017, 50(8): 29-33. | |
24 | YOON Hyungsub, MATTEINI Paolo, HWANG Byungil. Review on three-dimensional ceramic filler networking composites for thermal conductive applications[J]. Journal of Non-Crystalline Solids, 2022, 576: 121272. |
25 | 姚正高, 曹政, 张磊, 等. 三维导热高分子复合材料制备方法研究进展[J]. 工程塑料应用, 2022, 50(5): 159-164. |
YAO Zhenggao, CAO Zheng, ZHANG Lei, et al. Research progress on preparation methods of three dimensional thermal conductive polymer composites[J]. Engineering Plastics Application, 2022, 50(5): 159-164. | |
26 | SHEN Ziming, FENG Jiachun. Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement[J]. Composites Science and Technology, 2019, 170: 135-140. |
27 | 姜文政, 林瑛, 江平开, 等. 三维氮化硼结构及其导热绝缘聚合物纳米复合材料[J]. 电气工程学报, 2021, 16(2): 12-24. |
JIANG Wenzheng, LIN Ying, JIANG Pingkai, et al. Three-dimensional structured boron nitride and its thermally conductive and electrically insulating composites[J]. Journal of Electrical Engineering, 2021, 16(2): 12-24. | |
28 | HE Jing, WANG Hua, QU Qiqi, et al. Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites[J]. Composites Communications, 2020, 22: 100448. |
29 | 肖超. 三维导热网络的构筑及其环氧树脂复合材料性能研究[D]. 合肥: 中国科学技术大学, 2020. |
XIAO Chao. Study on the construction of three-dimensional thermally conductive network and properties of the corresponding epoxy composites[D]. Hefei: University of Science and Technology of China, 2020. | |
30 | YAO Yimin, YE Zhenqiang, HUANG Feiyang, et al. Achieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2892-2902. |
31 | HUANG Taoqing, LI Yongwei, CHEN Min, et al. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae[J]. Composites Science and Technology, 2020, 198: 108322. |
32 | HE Shan, ZHANG Yongsheng, ZHANG Nan, et al. Multi-directionally thermal conductive epoxy/boron nitride composites based on circinate vane type network[J]. Composites Communications, 2021, 25: 100744. |
33 | HAN Jingkai, DU Gaolai, GAO Weiwei, et al. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network[J]. Advanced Functional Materials, 2019, 29(13): 1900412. |
34 | PAN Duo, DONG Jingwen, YANG Gui, et al. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 58-70. |
35 | AN Dong, CHENG Shuaishuai, ZHANG Zhiyi, et al. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections[J]. Carbon, 2019, 155: 258-267. |
36 | WANG Jin, REN Penggang, CHEN Zhengyan, et al. Highly thermally conductive and electrical insulating epoxy-based composites containing oriented ternary carbon/graphene/MgO hybrid network[J]. Ceramics International, 2022, 48(9): 13115-13124. |
37 | LIU Li, XIANG Daoping, WU Liangqing. Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network[J]. Ceramics International, 2022, 48(8): 10438-10446. |
38 | LI Haitong, FU Chenjie, CHEN Nan, et al. Ice-templated assembly strategy to construct three-dimensional thermally conductive networks of BN nanosheets and silver nanowires in polymer composites[J]. Composites Communications, 2021, 25: 100601. |
39 | CHEN Xuelong, Jacob Song Kiat LIM, YAN Weili, et al. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16987-16996. |
40 | PAN Duo, LI Qianming, ZHANG Wei, et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method[J]. Composites Part B: Engineering, 2021, 209: 108609. |
41 | HOSSAIN Saddam, CHUN Doo-Man. ZnO decorated polydimethylsiloxane sponges as photocatalysts for effective removal of methylene blue dye[J]. Materials Chemistry and Physics, 2020, 255: 123589. |
42 | LIN Qiuhao, HE Shan, LIU Qingqing, et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability[J]. Composites Science and Technology, 2022, 226: 109528. |
43 | PAN Wu, HE Miaomiao, ZHANG Li, et al. Interfacial engineering of graphene nanosheets at MgO particles for thermal conductivity enhancement of polymer composites[J]. Nanomaterials, 2019, 9(5): 798. |
44 | CHEN Qiming, WU Wei, WANG Yi, et al. Polyurethane-templated 3D BN network for enhanced thermally conductive property of epoxy composites[J]. Polymer, 2021, 235: 124239. |
45 | CHEN Jin, HUANG Xingyi, ZHU Yingke, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754. |
46 | YOU Jiangan, XING Haiping, XUE Jian, et al. Preparation of rigid cross-linked PVC foam with excellent thermal insulation through adding high-reflectivity IR opacifier[J]. Composites Science and Technology, 2021, 203: 108566. |
47 | ZHOU Wenying, ZHANG Yong, WANG Jianjun, et al. Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46767-46778. |
48 | XIAO Chao, CHEN Lu, TANG Yunlu, et al. Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105511. |
49 | TIAN Zhilin, SUN Jiajia, WANG Shaogang, et al. A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride[J]. Journal of Materials Chemistry A, 2018, 6(36): 17540-17547. |
50 | LEE Jooyoung, KIM Jooheon. Improved through-plane thermal conductivity of 3D structured composites via BN alignment and AlN surface modification[J]. Composites Communications, 2021, 28: 100935. |
51 | XU Xinwei, HU Renchao, CHEN Meiyu, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal, 2020, 397: 125447. |
52 | AHSAN Hafiz Muhammad, PEI Ying, LUO Xiaogang, et al. Novel stable Pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles[J]. Food Hydrocolloids, 2020, 108: 106044. |
53 | QUILL Tyler J, SMITH Matthew K, ZHOU Tony, et al. Thermal and mechanical properties of 3D printed boron nitride-ABS composites[J]. Applied Composite Materials, 2018, 25(5): 1205-1217. |
54 | ZHENG Yanling, HUANG Xu, CHEN Jialiang, et al. A review of conductive carbon materials for 3D printing: Materials, technologies, properties, and applications[J]. Materials, 2021, 14(14): 3911. |
55 | CHEN Minhang, YIN Tingting, FU Peng, et al. Construction and mechanism of 3D printed polyamide 12/boron nitride template composites with localized and unidirectional thermally conductive property[J]. Composites Part B: Engineering, 2021, 225: 109267. |
56 | WANG Haohuan, HUANG Zhengyong, LI Jian, et al. Design of 3D printed bioinspired nacre-like structured materials with significantly enhanced thermal conductivity[J]. Applied Physics Letters, 2021, 118(13): 131903. |
57 | LIU Mengjing, CHIANG Sunwai, CHU Xiaodong, et al. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing[J]. Ceramics International, 2020, 46(13): 20810-20818. |
58 | JI Jiacheng, CHIANG Sum-Wai, LIU Mengjing, et al. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing[J]. Thermochimica Acta, 2020, 690: 178649. |
59 | DONG Jie, CAO Lei, LI Yun, et al. Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges[J]. Composites Science and Technology, 2020, 196: 108242. |
60 | 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5): 1371-1386. |
FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1371-1386. | |
61 | GARCIA-TAORMINA Alina R, ADIE Alwen, RUTH Schwaiger, et al. A review of coated nano- and micro-lattice materials[J]. Journal of Materials Research, 2021, 36(18): 3607-3627. |
62 | WANG Xiongwei, WU Peiyi. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19934-19944. |
63 | WANG Xiao, LU Hui, FENG Changping, et al. Facile method to fabricate highly thermally conductive UHMWPE/BN composites with the segregated structure for thermal management[J]. Plastics, Rubber and Composites, 2020, 49(5): 196-203. |
64 | YUAN Hao, WANG Yang, LI Ting, et al. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale, 2019, 11(23): 11360-11368. |
65 | SHEN Wanting, WU Wei, LIU Chao, et al. Achieving a high thermal conductivity for segregated BN/PLA composites via hydrogen bonding regulation through cellulose network[J]. Polymers for Advanced Technologies, 2020, 31(9): 1911-1920. |
66 | YE Xinli, CHEN Zhaofeng, AI Sufen, et al. Mechanical and thermal properties of reticulated SiC aerogel composite prepared by template method[J]. Journal of Composite Materials, 2019, 53(28/29/30): 4117-4124. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[8] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[9] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[10] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[11] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[12] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[13] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[14] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[15] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |