Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6301-6309.DOI: 10.16085/j.issn.1000-6613.2023-0075
• Industrial catalysis • Previous Articles
CHEN Yuqing(), QI Suitao(), YANG Bolun
Received:
2023-01-15
Revised:
2023-03-22
Online:
2024-01-08
Published:
2023-12-25
Contact:
QI Suitao
通讯作者:
齐随涛
作者简介:
陈宇晴(1999—),女,硕士研究生,研究方向为环境友好催化反应及催化剂设计。E-mail:1037528785@qq.com。
基金资助:
CLC Number:
CHEN Yuqing, QI Suitao, YANG Bolun. Research progress of hydrogenolysis of glycerol to 1,3-propanediol over supported Pt-WO x catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6301-6309.
陈宇晴, 齐随涛, 杨伯伦. Pt-WO x 系催化剂上甘油氢解制1,3-丙二醇的研究进展[J]. 化工进展, 2023, 42(12): 6301-6309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0075
1 | 刘锐宇. 生物柴油的研究现状及展望[J]. 石化技术, 2022, 29(1): 186-187. |
LIU Ruiyu. Research status and prospect of biodiesel[J]. Petrochemical Industry Technology, 2022, 29(1): 186-187. | |
2 | NANDA M R, YUAN Z S, QIN W S, et al. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive[J]. Fuel, 2014, 117: 470-477. |
3 | WANG Yuan, XIAO Yang, XIAO Guomin. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1536-1542. |
4 | SUN D, YAMADA Y, SATO S, et al. Glycerol hydrogenolysis into useful C3 chemicals[J]. Applied Catalysis B: Environmental, 2016, 193: 75-92. |
5 | 王冬祥, 王晨, 王世杰, 等. 粗甘油高值化利用研究现状及发展趋势[J]. 化工进展, 2020, 39(8): 3041-3048. |
WANG Dongxiang, WANG Chen, WANG Shijie, et al. Research status and development trend of high-value utilization of crude glycerol[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3041-3048. | |
6 | BAGHERI S, JULKAPLI N M, YEHYE W A. Catalytic conversion of biodiesel derived raw glycerol to value added products[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 113-127. |
7 | ZHAO Huaiyuan, ZHENG Liping, LI Xuewen, et al. Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: A short review[J]. Catalysis Today, 2020, 355: 84-95. |
8 | ANITHA M, KAMARUDIN S K, KOFLI N T. The potential of glycerol as a value-added commodity[J]. Chemical Engineering Journal, 2016, 295: 119-130. |
9 | LIU Xi, YIN Bin, ZHANG Wenxiang, et al. Catalytic transfer hydrogenolysis of glycerol over heterogeneous catalysts: a short review on mechanistic studies[J]. Chemical Record, 2021, 21(7): 1792-1810. |
10 | MANE R, JEON Y, RODE C. A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen[J]. Green Chemistry, 2022, 24: 6751-6781. |
11 | 余晓鹏, 张付宝. 甘油氢解制备1,2-丙二醇铜基催化剂研究进展[J]. 应用化工, 2022, 51(6): 1719-1723. |
YU Xiaopeng, ZHANG Fubao. Advance in hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts[J]. Applied Chemical Industry, 2022, 51(6): 1719-1723. | |
12 | 王辉国, 汪宏宇, 罗国华, 等. 甘油氢解制备1,2-丙二醇催化剂的研究进展[J]. 化工进展, 2018, 37(6): 2214-2221. |
WANG Huiguo, WANG Hongyu, LUO Guohua, et al. Research progress of catalyst in catalytic hydrogenolysis of glycerol to 1,2-propanediol[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2214-2221. | |
13 | 李烁, 李靖. 国内1,3-丙二醇市场现状和发展建议[J]. 精细与专用化学品, 2022, 30(3): 12-15. |
LI Shuo, LI Jing. Domestic market situation and development suggestions of 1,3-propanediol[J]. Fine and Specialty Chemicals, 2022, 30(3): 12-15. | |
14 | 方伟国, 姚小兰, 杨继东, 等. 生物基甘油氢解合成1,3-丙二醇催化剂的研究进展[J]. 分子催化, 2018, 32(6): 581-593. |
FANG Weiguo, YAO Xiaolan, YANG Jidong, et al. Research progress of catalysts in hydrogenolysis of bioglycerol to 1,3-propanediol [J]. Journal of Molecular Catalysis, 2018, 32(6): 581-593. | |
15 | 王佳. 钨基催化剂氢解甘油制备1,3-丙二醇的研究进展[J]. 中国钨业, 2018, 33(06): 22-29, 35. |
WANG Jia. Research progress in selective hydrogenolysis of glycerol to 1,3-propanediol over tungsten-based catalysts[J]. China Tungsten Industry, 2018, 33(06): 22-29, 35. | |
16 | SILVA RUY A D DA, DE BRITO ALVES R M, HEWER T L R, et al. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market[J]. Catalysis Today, 2021, 381: 243-253. |
17 | WANG Jia, YANG Man, WANG Aiqin. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts[J]. Chinese Journal of Catalysis, 2020, 41(9): 1311-1319. |
18 | NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol[J]. Journal of Materials Chemistry A, 2014, 2(19): 6688-6702. |
19 | GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, et al. New approaches to the Pt/WO x /Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol[J]. Journal of Catalysis, 2015, 323: 65-75. |
20 | ZHOU Wei, LUO Juan, WANG Yue, et al. WO x domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WO x /ZrO2 [J]. Applied Catalysis B: Environmental, 2019, 242: 410-421. |
21 | FENG Shanghua, ZHAO Binbin, LIANG Yu, et al. Improving selectivity to 1,3-propanediol for glycerol hydrogenolysis using W- and Al-incorporated SBA-15 as support for Pt nanoparticles[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2661-2671. |
22 | FENG Shanghua, ZHAO Binbin, LIU Lei, et al. Platinum supported on WO3-doped aluminosilicate: A highly efficient catalyst for selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11065-11074. |
23 | MAI C T Q, NG F T T. Effect of metals on the hydrogenolysis of glycerol to higher value sustainable and green chemicals using a supported HSiW catalyst[J]. Organic Process Research & Development, 2016, 20(10): 1774-1780. |
24 | COLL D, DELBECQ F, ARAY Y, et al. Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles[J]. Physical Chemistry Chemical Physics, 2011, 13(4): 1448-1456. |
25 | GONG Leifeng, LU Yuan, DING Yunjie, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media[J]. Applied Catalysis A: General, 2010, 390(1/2): 119-126. |
26 | PRIYA S S, KUMAR V P, KANTAM M L, et al. High efficiency conversion of glycerol to 1,3-propanediol using a novel platinum-tungsten catalyst supported on SBA-15[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9104-9115. |
27 | ZHU Shanhui, GAO Xiaoqing, ZHU Yulei, et al. Promoting effect of WO x on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt-WO x /Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 391-398. |
28 | ZHOU Wei, LI Ying, WANG Xiaofei, et al. Insight into the nature of Brönsted acidity of Pt-(WO x ) n -H model catalysts in glycerol hydrogenolysis[J]. Journal of Catalysis, 2020, 388: 154-163. |
29 | GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, et al. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WO x /Al2O3 [J]. Applied Catalysis B: Environmental, 2017, 204: 260-272. |
30 | FAN Yiqiu, CHENG Shijie, WANG Hao, et al. Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Green Chemistry, 2017, 19(9): 2174-2183. |
31 | WANG Jia, ZHAO Xiaochen, LEI Nian, et al. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WO x -supported single/pseudo-single atom Pt catalyst[J]. ChemSusChem, 2016, 9(8): 784-790. |
32 | WEN Yinglin, SHEN Weihua, LI Yang, et al. Promoting effect of Ru in the Pt-Ru/WO x /Al2O3 catalyst for the selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(1): 219-233. |
33 | 张威, 陈长林. 偏硼酸镁修饰的铂钨铝复合氧化物催化甘油氢解[J]. 工业催化, 2021, 29(5): 47-53. |
ZHANG Wei, CHEN Changlin. Hydrogenolysis of glycerol catalyzed by magnesium metaborate modified Pt-W-Al composite oxide[J]. Industrial Catalysis, 2021, 29(5): 47-53. | |
34 | ZHU Min, CHEN Changlin. Hydrogenolysis of glycerol to 1,3-propanediol over Li2B4O7-modified tungsten-zirconium composite oxides supported platinum catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 683-699. |
35 | LIANG Yuxin, SHI Guojun, JIN Kai. Promotion effect of Al2O3 on Pt-WO x /SiO2 catalysts for selective hydrogenolysis of bioglycerol to 1,3-propanediol in liquid phase[J]. Catalysis Letters, 2020, 150(8): 2365-2376. |
36 | FAN Yiqiu, CHENG Shijie, WANG Hao, et al. Pt-WO x on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2017, 217: 331-341. |
37 | ZENG Yang, JIANG Lan, ZHANG Xiaoxin, et al. Effect of titania polymorphs on the structure and catalytic performance of the Pt-WO x /TiO2 catalyst in glycerol hydrogenolysis to 1,3-propanediol[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9532-9545. |
38 | 曾杨, 姜兰, 张晓昕, 等. W掺杂多级孔SiO2 纳米球负载Pt用于催化甘油氢解制1,3-丙二醇[J]. 化学学报, 2022, 80(7): 903-912. |
ZENG Yang, JIANG Lan, ZHANG Xiaoxin, et al. W-doped hierarchically porous silica nanosphere supported platinum for catalytic glycerol hydrogenolysis to 1,3-propanediol[J]. Acta Chimica Sinica, 2022, 80(7): 903-912. | |
39 | LIU Longjie, ZHANG Yanhua, WANG Aiqin, et al. Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1,3-propanediol[J]. Chinese Journal of Catalysis, 2012, 33(7/8): 1257-1261. |
40 | ZHAO Binbin, LIANG Yu, LIU Lei, et al. Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol[J]. Green Chemistry, 2020, 22(23): 8254-8259. |
41 | SHI Guojun, XU Jinyang, SONG Zhigang, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-WO x /SAPO-34 catalysts[J]. Molecular Catalysis, 2018, 456: 22-30. |
42 | SHI Guojun, CAO Zhen, XU Jinyang, et al. Effect of WO x doping into Pt/SiO2 catalysts for glycerol hydrogenolysis to 1,3-propanediol in liquid phase[J]. Catalysis Letters, 2018, 148(8): 2304-2314. |
43 | BHOWMIK S, ENJAMURI N, DARBHA S. Hydrogenolysis of glycerol in an aqueous medium over Pt-WO3 /zirconium phosphate catalysts studied by 1H NMR spectroscopy[J]. New Journal of Chemistry, 2021, 45(11): 5013-5022. |
44 | BHOWMIK S, ENJAMURI N, SETHIA G, et al. Insights into active tungsten species on Pt/W/SBA-15 catalysts for selective hydrodeoxygenation of glycerol to 1,3-propanediol[J]. Molecular Catalysis, 2022, 531: 112704. |
45 | LI Yuming, LIU Haichao. Selective hydrogenolysis of glycerol to 1,3-propanediol over supported platinum-tungsten oxide catalysts[J]. Acta Physico-Chimica Sinica, 2022, 38(10): 2207014-2207010. |
46 | GARCÍA-FERNÁNDEZ S, GANDARIAS I, TEJIDO-NÚÑEZ Y, et al. Influence of the support of bimetallic platinum tungstate catalysts on 1,3-propanediol formation from glycerol[J]. ChemCatChem, 2017, 9(24): 4508-4519. |
47 | AIHARA T, KOBAYASHI H, FENG Shixiang, et al. Effect of WO3 loading on the activity of Pt/WO3/Al2O3 catalysts in selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Chemistry Letters, 2017, 46(10): 1497-1500. |
48 | LEI Nian, ZHAO Xiaochen, HOU Baolin, et al. Effective hydrogenolysis of glycerol to 1,3-propanediol over metal-acid concerted Pt/WO x /Al2O3 catalysts[J]. ChemCatChem, 2019, 11(16): 3903-3912. |
49 | WANG Chao, CHEN Changlin. Stabilized hydrogenolysis of glycerol to 1,3-propanediol over Mg modified Pt/WO x -ZrO2 catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 461-477. |
50 | ZHU Shanhui, GAO Xiaoqing, ZHU Yulei, et al. SiO2 promoted Pt/WO x /ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2014, 158/159: 391-399. |
51 | ZHAO Junxiu, HOU Bo, GUO Heqin, et al. Insight into the influence of WO x -support interaction over Pt /W/SiZr catalysts on 1,3-propanediol synthesis from glycerol[J]. ChemCatChem, 2022, 14(14): e202200341. |
52 | ZHAO Binbin, LIANG Yu, YAN Wenjun, et al. A facile approach to tune WOx species combining Pt catalyst for enhanced catalytic performance in glycerol hydrogenolysis[J]. Industrial & Engineering Chemistry Research, 2021, 60(34): 12534-12544. |
53 | ZHAO Binbin, LIANG Yu, LIU Lei, et al. Facilitating Pt-WO x species interaction for efficient glycerol hydrogenolysis to 1,3-propanediol[J]. ChemCatChem, 2021, 13(16): 3695-3705. |
54 | ZHOU Maoxiang, YANG Man, YANG Xiaofeng, et al. On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WO x in the hydrogenolysis reaction[J]. Chinese Journal of Catalysis, 2020, 41(3): 524-532. |
55 | NIU Yufeng, ZHAO Binbin, LIANG Yu, et al. Promoting role of oxygen deficiency on a WO3-supported Pt catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7389-7397. |
56 | CHEN Chen, LIANG Yu, TANG Qiong, et al. In situ growth of tungsten oxide on alumina to boost the catalytic performance of platinum for glycerol hydrogenolysis[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12504-12512. |
57 | YANG Man, WU Keying, SUN Shaodong, et al. Regulating oxygen defects via atomically dispersed alumina on Pt/WO x catalyst for enhanced hydrogenolysis of glycerol to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2022, 307: 121207. |
58 | ZHAO Xiaochen, WANG Jia, YANG Man, et al. Selective hydrogenolysis of glycerol to 1,3-propanediol: Manipulating the frustrated Lewis pairs by introducing gold to Pt/WO x [J]. ChemSusChem, 2017, 10(5): 819-824. |
59 | MIAO Gai, SHI Lei, ZHOU Zhimin, et al. Catalyst design for selective hydrodeoxygenation of glycerol to 1,3-propanediol[J]. ACS Catalysis, 2020, 10(24): 15217-15226. |
60 | LEI Nian, MIAO Zhili, LIU Fei, et al. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction[J]. Chinese Journal of Catalysis, 2020, 41(8): 1261-1267. |
61 | WANG Ben, LIU Fei, GUAN Weixiang, et al. Promoting the effect of Au on the selective hydrogenolysis of glycerol to 1,3-propanediol over the Pt/WOx/Al2O3 catalyst[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5705-5715. |
62 | ZHOU Wei, ZHAO Yujun, WANG Yue, et al. Glycerol hydrogenolysis to 1,3-propanediol on tungstate/zirconia-supported platinum: hydrogen spillover facilitated by Pt(111) formation[J]. ChemCatChem, 2016, 8(23): 3663-3671. |
63 | 徐文峰, 牛鹏宇, 郭荷芹, 等. Al2O3载体负载的铂和钨双功能催化剂在甘油氢解制1,3-丙二醇中的性能研究[J]. 燃料化学学报, 2021, 49(9): 1270-1280. |
XU Wenfeng, NIU Pengyu, GUO Heqin, et al. Study on the performance of platinum and tungsten bifunctional catalyst supported on Al2O3 in the hydrogenolysis of glycerol to 1,3-propanediol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1270-1280. | |
64 | 尹艳艳, 赵余龙, 孙齐磊, 等. 铂/氧化钨/硅铝氧化物催化甘油氢解性能研究[J]. 金属功能材料, 2021, 28(6): 44-51. |
YIN Yanyan, ZHAO Yulong, SUN Qilei, et al. The platinum/tungsten oxide/amorphous silicon aluminum oxide catalysts for catalytic hydrogenolysis of glycerol[J]. Metallic Functional Materials, 2021, 28(6): 44-51. | |
65 | WANG Yaju, ZHOU Zhiming, WANG Chao, et al. Hydrogenolysis of glycerol over TiO2-supported Pt-WO x catalysts: Effects of the TiO2 crystal phase and WO x loading[J]. Frontiers in Chemistry, 2022, 10: 1004925-1004925. |
66 | KUROSAKA T, MARUYAMA H, NARIBAYASHI I, et al. Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2 [J]. Catalysis Communications, 2008, 9(6): 1360-1363. |
67 | QIN Lizhen, SONG Minjie, CHEN Changlin. Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor[J]. Green Chemistry, 2010, 12(8): 1466-1472. |
68 | GONG Leifeng, Yuan LYU, DING Yunjie, et al. Solvent effect on selective dehydroxylation of glycerol to 1,3-propanediol over a Pt/WO3/ZrO2 catalyst[J]. Chinese Journal of Catalysis, 2009, 30(12): 1189-1191. |
69 | NUMPILAI T, CHENG C K, SEUBSAI A, et al. Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WO x /Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions[J]. Environmental Pollution, 2021, 272: 116029. |
70 | XU Wenfeng, NIU Pengyu, GUO Heqin, et al. Hydrogenolysis of glycerol to 1,3-propanediol over a Al2O3-supported platinum tungsten catalyst with two-dimensional open structure[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 173-189. |
71 | CHENG Shijie, FAN Yiqiu, ZHANG Xiaoxin, et al. Tungsten-doped siliceous mesocellular foams-supported platinum catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Applied Catalysis B: Environmental, 2021, 297: 120428. |
[1] | ZHANG Guangyu, ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei. Recent advances on catalytic conversion of CO2 into propylene carbonate: catalyst design, performance and reaction mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189. |
[2] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[3] | YUE Yao, PU Mengfan, WANG Wenrui, ZHAO Jianbo, CAO Hui. Preparation and biodegradability of polyaspartic acid hydrogel [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4491-4497. |
[4] | LI Yanping, YAN Dazhou, YANG Tao, WEN Guosheng, HAN Zhicheng. Removal of methylchlorosilane in silicon-based electron gas by molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4375-4385. |
[5] | CHANG Yaoping, GUAN Xiushuai, ZHENG Qian, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Hydrothermal preparation of 3D flower-spherical Bi2SiO5 for photocatalytic esterification of oleic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4181-4191. |
[6] | CHEN Danyang, ZHU Jianyu, WU Qin, WANG Ziqing, ZHANG Jinli. KF/MgO catalyzed transesterification of glycerol and dimethyl carbonate to glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2082-2089. |
[7] | CHEN Huan, WAN Kun, NIU Bo, ZHANG Yayun, LONG Donghui. Recent progresses in chemical recycling and upcycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469. |
[8] | JI Zike, BAO Cheng. Research progress of selective CO methanation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 120-132. |
[9] | ZHANG Wenhui, HUA Rui, QI Suitao. Research progress of low temperature Fischer-Tropsch synthetic wax oil hydrocracking refining technology [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 81-87. |
[10] | TIAN Yuanyu, QIAO Yingyun. Construction and application of the radical regulation reaction mechanism in petroleum pyrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2928-2932. |
[11] | KE Yihu, LI Jingyun, LIU Chunling, DONG Wensheng, LIU Hai. Zn(Al)O composite oxides supported Au catalysts for selective oxidation of glycerol to 1, 3-dihydroxyacetone [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2581-2592. |
[12] | Tong WANG, Hualiang AN, Fang LI, Wei XUE, Yanji WANG. Research progress of the heterogeneous catalysts for 2,5-dimethylfuran synthesis via hydrogenolysis of 5-hydroxymethylfufural [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 824-834. |
[13] | Yitao LIU, Minghui ZHU, Zixu YANG, Bo MENG, Weifeng TU, Yifan HAN. Advances of catalysts for direct synthesis of lower olefins from syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604. |
[14] | CHEN Huichao, LI Xue, LIANG Xiao, WANG Meng. Research development of mechanochemistry in environmental pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6332-6346. |
[15] | MA Xinru, GUO Tao, WANG Qun, LI Junmei, ZHANG Zhennan, CAO Qing. Preparation and properties of coal pitch-based water-absorbing resin [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5634-5641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |