Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6286-6300.DOI: 10.16085/j.issn.1000-6613.2023-0126
• Industrial catalysis • Previous Articles
ZHOU Jiali1,2(), MA Ziran1(), LI Ge1, ZHAO Chunlin1, WANG Hongyan1, WANG Lei1
Received:
2023-02-02
Revised:
2023-05-24
Online:
2024-01-08
Published:
2023-12-25
Contact:
MA Ziran
周佳丽1,2(), 马子然1(), 李歌1, 赵春林1, 王红妍1, 王磊1
通讯作者:
马子然
作者简介:
周佳丽(1992—),女,硕士,工程师,研究方向为环保催化材料开发及应用。E-mail:jiali.zhou@chnenergy.com.cn。
基金资助:
CLC Number:
ZHOU Jiali, MA Ziran, LI Ge, ZHAO Chunlin, WANG Hongyan, WANG Lei. Research progress on anti-poisoning of SCR catalysts in flue gas of coal and renewable fuel co-fired power plant[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6286-6300.
周佳丽, 马子然, 李歌, 赵春林, 王红妍, 王磊. 燃煤耦合可再生燃料电厂抗中毒脱硝催化剂研究进展[J]. 化工进展, 2023, 42(12): 6286-6300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0126
中毒元素 | 主要中毒机理 | 抗中毒策略 |
---|---|---|
碱金属 K、Na等 | ①碱金属盐沉积堵塞表面孔道,改变微孔结构; ②降低催化剂表面酸性; ③与催化剂表面活性氧结合,降低氧化还原能力; ④抑制NO x 或NH3的表面吸附和后续活化 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化; ②掺杂助剂元素提高催化剂表面酸性和氧化还原性; ③引入表面牺牲剂,构建碱金属捕集位点,优先吸附碱(土)金属,保护活性中心; ④构筑特殊孔道结构或形貌,使活性组分高度分散在特定空间,利用尺寸效应对毒化物限域捕捉,保护活性组分,如构造核壳结构、纳米管结构、六棱柱形貌等; ⑤通过缺陷工程在载体上构建晶体缺陷,增加氧空位,不使用活性组分,本质上避免中毒 |
碱土金属 Ca、Mg等 | ①碱土金属盐体积膨胀,堵塞催化剂孔道,遮蔽表面反应活性位; ②中和催化剂表面酸性,减少活性位点; ③与催化剂活性位点、反应气体发生反应; ④抑制NH3的表面吸附 | |
酸性气体 HCl、HF | ①与反应气体反应,产物覆盖、堵塞催化剂孔道; ②与活性组分发生反应,造成活性位损失; ③抑制NO x 的表面吸附 | ①引入添加剂,作为牺牲位点; ②构筑特殊孔道结构或形貌,保护活性位点 |
SO2、SO3 | ①生成硫酸氢铵和硫酸铵,降低催化剂比表面积、孔体积; ②与催化剂表面的活性成分发生反应,生成金属硫酸盐; ③在催化剂表面与NO x 竞争吸附 | ①掺杂助剂或表面改性加强载体和活性组分的表面酸性,抑制SO x 的吸附; ②引入功能性促进剂,建立牺牲位点,保护活性中心; ③构建保护壳,利用界面效应保护活性位点; ④构造载体多级孔结构,促进硫酸氢铵分解; ⑤保证催化剂机械强度条件下降低壁厚,降低SO2氧化率,抑制硫酸氢铵和硫酸盐生成 |
非金属 P、As、Se等 | ①酸化合物、非金属氧化物覆盖催化剂表面,堵塞孔道; ②与载体或活性组分成键,发生化学反应,破坏催化剂活性中心和酸性位点; ③破坏活性组分-载体结构 | ①调整催化剂孔隙结构,构造多级孔结构,保证反应气体分子扩散; ②添加助剂,抑制中毒元素的吸附沉积、保护催化剂活性 组分、增加酸位点数量 |
重金属 Hg、Pb等 | ①氧化物颗粒堵塞孔隙,阻碍气体扩散; ②占据酸性位点,抑制催化剂对NH3的吸附和活化; ③改变催化剂活性物种价态,降低氧化还原能力; ④改变活性组分晶体形态,由无定形向晶体结构转变 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化,使用固体超强酸等; ②添加助剂,增加酸性位点,促进NH3吸附活化; ③构筑特殊孔道结构或形貌,使活性组分高度分散在特定 空间,增加催化剂表面酸性位点,保护活性位点 |
中毒元素 | 主要中毒机理 | 抗中毒策略 |
---|---|---|
碱金属 K、Na等 | ①碱金属盐沉积堵塞表面孔道,改变微孔结构; ②降低催化剂表面酸性; ③与催化剂表面活性氧结合,降低氧化还原能力; ④抑制NO x 或NH3的表面吸附和后续活化 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化; ②掺杂助剂元素提高催化剂表面酸性和氧化还原性; ③引入表面牺牲剂,构建碱金属捕集位点,优先吸附碱(土)金属,保护活性中心; ④构筑特殊孔道结构或形貌,使活性组分高度分散在特定空间,利用尺寸效应对毒化物限域捕捉,保护活性组分,如构造核壳结构、纳米管结构、六棱柱形貌等; ⑤通过缺陷工程在载体上构建晶体缺陷,增加氧空位,不使用活性组分,本质上避免中毒 |
碱土金属 Ca、Mg等 | ①碱土金属盐体积膨胀,堵塞催化剂孔道,遮蔽表面反应活性位; ②中和催化剂表面酸性,减少活性位点; ③与催化剂活性位点、反应气体发生反应; ④抑制NH3的表面吸附 | |
酸性气体 HCl、HF | ①与反应气体反应,产物覆盖、堵塞催化剂孔道; ②与活性组分发生反应,造成活性位损失; ③抑制NO x 的表面吸附 | ①引入添加剂,作为牺牲位点; ②构筑特殊孔道结构或形貌,保护活性位点 |
SO2、SO3 | ①生成硫酸氢铵和硫酸铵,降低催化剂比表面积、孔体积; ②与催化剂表面的活性成分发生反应,生成金属硫酸盐; ③在催化剂表面与NO x 竞争吸附 | ①掺杂助剂或表面改性加强载体和活性组分的表面酸性,抑制SO x 的吸附; ②引入功能性促进剂,建立牺牲位点,保护活性中心; ③构建保护壳,利用界面效应保护活性位点; ④构造载体多级孔结构,促进硫酸氢铵分解; ⑤保证催化剂机械强度条件下降低壁厚,降低SO2氧化率,抑制硫酸氢铵和硫酸盐生成 |
非金属 P、As、Se等 | ①酸化合物、非金属氧化物覆盖催化剂表面,堵塞孔道; ②与载体或活性组分成键,发生化学反应,破坏催化剂活性中心和酸性位点; ③破坏活性组分-载体结构 | ①调整催化剂孔隙结构,构造多级孔结构,保证反应气体分子扩散; ②添加助剂,抑制中毒元素的吸附沉积、保护催化剂活性 组分、增加酸位点数量 |
重金属 Hg、Pb等 | ①氧化物颗粒堵塞孔隙,阻碍气体扩散; ②占据酸性位点,抑制催化剂对NH3的吸附和活化; ③改变催化剂活性物种价态,降低氧化还原能力; ④改变活性组分晶体形态,由无定形向晶体结构转变 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化,使用固体超强酸等; ②添加助剂,增加酸性位点,促进NH3吸附活化; ③构筑特殊孔道结构或形貌,使活性组分高度分散在特定 空间,增加催化剂表面酸性位点,保护活性位点 |
1 | 陈志董, 林育超, 刘铭宇, 等. 污泥干燥及其与燃煤电站耦合的热力特性分析[J]. 热力发电, 2022, 51(5): 55-64. |
CHEN Zhidong, LIN Yuchao, LIU Mingyu, et al. Thermodynamic characteristic analysis of sewage sludge drying and its integration with coal-fired power plant[J]. Thermal Power Generation, 2022, 51(5): 55-64. | |
2 | 左克祥, 张秀峰. 大型燃煤机组污泥耦合发电技术研究与应用[J]. 电力科技与环保, 2022, 38(4): 317-325 |
ZUO Kexiang, ZHANG Xiufeng. Research and application of sludge coupling power generation technology for large coal-fired units[J]. Electric Power Technology and Environmental Protection, 2022, 38(4): 317-325 | |
3 | 张自丽. 循环流化床锅炉燃煤耦合污泥技术研究与展望[J]. 热力发电, 2020, 49(5): 7-13. |
ZHANG Zili. Research and prospect of coal-fired and sludge-coupled technologies in CFB boilers[J]. Thermal Power Generation, 2020, 49(5): 7-13. | |
4 | 李春建, 曾澄光, 段小云, 等. 煤与木屑掺烧的燃烧特性与污染物排放规律[J]. 能源与节能, 2022(6): 6-9, 127. |
LI Chunjian, ZENG Chengguang, DUAN Xiaoyun, et al. Co-combustion characteristics and pollutant emission regularity of coal and sawdust[J]. Energy and Energy Conservation, 2022(6): 6-9, 127. | |
5 | 董阳. 掺烧玉米秸秆对污泥灰磷形态转变的影响研究[D]. 贵阳: 贵州大学, 2022. |
DONG Yang. Study on the effect of corn straw on the transformation of phosphorus form in sludge ash[D]. Guiyang: Guizhou University, 2022. | |
6 | Nan-Yu TOPSØE. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219. |
7 | 杜凯敏, 秦刚华, 祁志福, 等. NH3-SCR脱硝催化剂的中毒及其抗毒策略[J]. 现代化工, 2021, 41(11): 58-62. |
DU Kaimin, QIN Ganghua, QI Zhifu, et al. Poisoning of NH3-SCR denitrification catalyst and resistance strategy[J]. Modern Chemical Industry, 2021, 41(11): 58-62. | |
8 | 穆林, 李通, 王震, 等. 藻类和木质生物质与烟煤掺混燃烧结渣特性[J]. 可再生能源, 2022, 40(2): 143-151 |
MU Lin, LI Tong, WANG Zhen, et al. Slag formation characteristics of co-combustion of bituminous coal with algae and woody biomass[J]. Renewable Energy Resources, 2022, 40(2): 143-151 | |
9 | ZHENG Yuanjing, JENSEN Anker Degn, JOHNSSON Jan Erik. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 253-264. |
10 | LI Xiang, LI Xiansheng, YANG Ralph T, et al. The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium[J]. Molecular Catalysis, 2017, 434: 16-24. |
11 | LI Junhua, PENG Yue, CHANG Huazhen, et al. Chemical poison and regeneration of SCR catalysts for NO x removal from stationary source[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413-427. |
12 | DU Xuesen, GAO Xiang, QIU Kunzan, et al. The reaction of poisonous alkali oxides with vanadia SCR catalyst and the afterward influence: A DFT and experimental study[J]. The Journal of Physical Chemistry C, 2015, 119(4): 1905-1912. |
13 | NICOSIA D, ĈZEKAJ I, KRÖCHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution[J]. Applied Catalysis B: Environmental, 2008, 77(3/4): 228-236. |
14 | PENG Yue, LI Junhua, CHEN Liang, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NO x with NH3: An experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46(5): 2864-2869. |
15 | YANG Xinfang, ZHAO Bo, ZHUO Yuqun, et al. DRIFTS study of ammonia activation over CaO and sulfated CaO for NO reduction by NH3 [J]. Environmental Science & Technology, 2011, 45(3): 1147-1151. |
16 | 林凡. 钒钛基脱硝催化剂抗碱金属中毒机理研究[D]. 重庆: 重庆大学, 2017. |
LIN Fan. Mechanism of anti-alkali metal poisoning of vanadium-titanium-based denitrification catalyst[D]. Chongqing: Chongqing University, 2017. | |
17 | PENG Yue, LI Junhua, HUANG Xu, et al. Deactivation mechanism of potassium on the V2O5/CeO2 catalysts for SCR reaction: Acidity, reducibility and adsorbed-NO x [J]. Environmental Science & Technology, 2014, 48(8): 4515-4520. |
18 | Ki Bok NAM, Jong Hyeon YEO, HONG Sung Chang. Study of the phosphorus deactivation effect and resistance of vanadium-based catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 18930-18941. |
19 | CAO Jun, ROHANI Sohrab, LIU Weizao, et al. Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NO x removal from co-incineration flue gas of domestic waste and municipal sludge[J]. Journal of Colloid and Interface Science, 2022, 610: 463-473. |
20 | HUANG Li, ZENG Yiqing, CHANG Zhengfeng, et al. Promotional effect of phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NO x by NH3 [J]. Molecular Catalysis, 2021, 506: 111565. |
21 | LI Mingyuan, GUO Ruitang, HU Changxing, et al. The enhanced resistance to K deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modification with P[J]. Applied Surface Science, 2018, 436: 814-822. |
22 | WANG Yan, YU Jianglong, WANG Zhihua, et al. A review on arsenic removal from coal combustion: Advances, challenges and opportunities[J]. Chemical Engineering Journal, 2021, 414: 128785. |
23 | LU Qiang, PEI Xinqi, WU Yangwen, et al. Deactivation mechanism of the commercial V2O5-MoO3/TiO2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants[J]. Energy & Fuels, 2020, 34(4): 4865-4873. |
24 | PENG Yue, LI Junhua, SI Wenzhe, et al. Insight into deactivation of commercial SCR catalyst by arsenic: An experiment and DFT study[J]. Environmental Science & Technology, 2014, 48(23): 13895-13900. |
25 | LIU Zhong, HAN Jian, ZHAO Li, et al. Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst[J]. Applied Catalysis A: General, 2019, 587: 117263. |
26 | 霍丽丽, 赵立欣, 郝彦辉, 等. 国内外生物质成型燃料质量标准现状[J]. 农业工程学报, 2020, 36(9): 245-254. |
HUO Lili, ZHAO Lixin, HAO Yanhui, et al. Quality standard system of densified biomass fuels at home and abroad[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 245-254. | |
27 | CHEN J P, BUZANOWSKI M A, YANG R T, et al. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. Journal of the Air & Waste Management Association, 1990, 40(10): 1403-1409. |
28 | LIU Shuaiwei, GUO Ruitang, SUN Xiao, et al. The deactivation effect of Cl on V/TiO2 catalyst for NH3-SCR process: A DRIFT study[J]. Journal of the Energy Institute, 2019, 92(5): 1610-1617. |
29 | YANG Ningzhi, GUO Ruitang, PAN Weiguo, et al. The deactivation mechanism of Cl on Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Surface Science, 2016, 378: 513-518. |
30 | DENG Lei, ZHU Zhengrong, WANG Yikun, et al. Deactivation influence of HF on the V2O5-WO3-TiO2 SCR catalyst[J]. Energy & Fuels, 2021, 35(5): 4377-4386. |
31 | YANG Yang, XU Wenqing, WU Yinghong, et al. Inhibition effect of HBr over a commercial V2O5-WO3/TiO2 catalyst in a NH3-SCR process[J]. Catalysis Communications, 2017, 94: 82-85. |
32 | MIAO Jifa, LI Huirong, SU Qingfa, et al. The combined promotive effect of SO2 and HCl on Pb-poisoned commercial NH3-SCR V2O5-WO3/TiO2 catalysts[J]. Catalysis Communications, 2019, 125: 118-122. |
33 | BARRER R M, KANELLOPOULOS A G. The sorption of ammonium chloride vapour in zeolites. Part Ⅰ. Hydrogen chloride and ammonia[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970: 765. |
34 | CHOUNG Jin Woo, In-Sik NAM. Characteristics of copper ion exchanged mordenite catalyst deactivated by HCl for the reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2006, 64(1/2): 42-50. |
35 | ZHANG Xiaoyang, FANG Beibei, CUI Lin, et al. Effects of HCl and O2 on Hg0 oxidation in the SCR catalyst[J]. Energy & Fuels, 2021, 35(14): 11382-11392. |
36 | ZHAO Li, LIU Yu, WU Yangwen, et al. Mechanism of heterogeneous mercury oxidation by HCl on V2O5(001) surface[J]. Current Applied Physics, 2018, 18(6): 626-632. |
37 | 李春建, 段小云, 曾澄光, 等. 煤掺混污泥的燃烧特性及排放规律[J]. 工业炉, 2022, 44(3): 20-25. |
LI Chunjian, DUAN Xiaoyun, ZENG Chengguang, et al. Combustion characteristics and emission law of coal mixed sludge[J]. Industrial Furnace, 2022, 44(3): 20-25. | |
38 | 翟胜兵, 李伟, 王明昊, 等. 旋流燃烧器生物质掺烧试验研究[J]. 锅炉制造, 2020(6): 14-17. |
ZHAI Shengbing, LI Wei, WANG Minghao, et al. Experimental study on the pulverized coal-biomass swirling burner[J]. Boiler Manufacturing, 2020(6): 14-17. | |
39 | XU Liwen, WANG Chizhong, CHANG Huazhen, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52 (12): 7064-7071. |
40 | PENG Yue, WANG Dong, LI Bing, et al. Impacts of Pb and SO2 poisoning on CeO2-WO3/TiO2-SiO2 SCR catalyst[J]. Environmental Science & Technology, 2017, 51(20): 11943-11949. |
41 | PAN Siwei, LUO Hongcheng, LI Li, et al. H2O and SO2 deactivation mechanism of MnO x /MWCNTs for low-temperature SCR of NO x with NH3 [J]. Journal of Molecular Catalysis A: Chemical, 2013, 377: 154-161. |
42 | Yujin EOM, JEON Seok Ho, Thanh An NGO, et al. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catalysis Letters, 2008, 121(3): 219-225. |
43 | YANG Jian, YANG Qiang, SUN Jian, et al. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catalysis Communications, 2015, 59: 78-82. |
44 | 刘强, 杨洋, 秦福初. 钒钛基SCR催化剂的制备及其汞中毒机理研究[J]. 当代化工研究, 2019(1): 168-169. |
LIU Qiang, YANG Yang, QIN Fuchu. Preparation of vanadium-titanium-based SCR catalyst and the research on its mercury poisoning mechanism[J]. Modern Chemical Research, 2019(1): 168-169. | |
45 | KONG Ming, LIU Qingcai, JIANG Lijun, et al. Property influence and poisoning mechanism of HgCl2 on V2O5-WO3/TiO2 SCR-DeNO x catalysts[J]. Catalysis Communications, 2016, 85: 34-38. |
46 | KHODAYARI Raziyeh, C U Ingemar ODENBRAND. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1196-1202. |
47 | PENG Yue, SI Wenzhe, LI Xiang, et al. Investigation of the poisoning mechanism of lead on the CeO2—WO3 catalyst for the NH3-SCR reaction via in situ IR and Raman spectroscopy measurement[J]. Environmental Science & Technology, 2016, 50(17): 9576-9582. |
48 | WU Yangwen, ZHOU Xinyue, CAI Qi, et al. Intrinsic mechanism insight of the interaction between lead species and the Vanadium-based catalysts based on First-principles investigation[J]. Journal of Colloid and Interface Science, 2022, 607: 1362-1372. |
49 | GAO Xiang, DU Xuesen, FU Yincheng, et al. Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides[J]. Catalysis Today, 2011, 175(1): 625-630. |
50 | 潘有春, 金奇杰, 沈岳松, 等. Sm3+掺入对MnO2/TiO2催化剂低温脱硝性能的影响[J]. 应用化工, 2019, 48(1): 38-42, 47. |
PAN Youchun, JIN Qijie, SHEN Yuesong, et al. Effect of Sm3+ on catalytic performance of MnO2/TiO2 catalyst for selective catalytic reduction of NO at low temperature[J]. Applied Chemical Industry, 2019, 48(1): 38-42, 47. | |
51 | GONG Pijun, HE Feng, FANG De, et al. In-situ DRIFTS study on the k-poisoning resistance mechanism of titanium bearing blast furnace slag catalyst by Sm/La doping[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107895. |
52 | CHEN Qilin, GUO Ruitang, WANG Qingshan, et al. The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 116-123. |
53 | ZHU Baozhong, ZI Zhaohui, SUN Yunlan, et al. Enhancing low-temperature SCR de-NO x and alkali metal poisoning resistance of a 3Mn10Fe/Ni catalyst by adding Co[J]. Catalysis Science & Technology, 2019, 9(12): 3214-3225. |
54 | YANG Ningzhi, GUO Ruitang, PAN Weiguo, et al. The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3 [J]. Fuel, 2016, 169: 87-92. |
55 | KHAN Mehak Nawaz, HAN Lupeng, WANG Penglu, et al. Tailored alkali resistance of DeNO x catalysts by improving redox properties and activating adsorbed reactive species[J]. iScience, 2020, 23(6): 101173. |
56 | YAN Zidi, SHI Xiaoyan, YU Yunbo, et al. Alkali resistance promotion of Ce-doped vanadium-titanic-based NH3-SCR catalysts[J]. Journal of Environmental Sciences, 2018, 73: 155-161. |
57 | PENG Yue, LI Junhua, SI Wenzhe, et al. Ceria promotion on the potassium resistance of MnO x /TiO2 SCR catalysts: An experimental and DFT study[J]. Chemical Engineering Journal, 2015, 269: 44-50. |
58 | ZHAO Wanxia, RONG Jing, LUO Wen, et al. Enhancing the K-poisoning resistance of CeO2-SnO2 catalyst by hydrothermal method for NH3-SCR reaction[J]. Applied Surface Science, 2022, 579: 152176. |
59 | XUE Hongyan, MENG Tao, LIU Fangfang, et al. Enhanced resistance to calcium poisoning on Zr-modified Cu/ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2019, 9(66): 38477-38485. |
60 | LI Xiang, LI Xiansheng, LI Junhua, et al. High calcium resistance of CeO2-WO3 SCR catalysts: Structure investigation and deactivation analysis[J]. Chemical Engineering Journal, 2017, 317: 70-79. |
61 | WANG Jiaqing, XING Yi, SU Wei, et al. Promotional effect of Sn additive on the chlorine resistance over SnMnO x /LDO catalysts for synergistic removal of NO x and o-DCB[J]. Catalysis Science & Technology, 2022, 12(12): 3863-3873. |
62 | 高翔, 骆仲泱, 岑可法, 等. 用于选择性催化还原氮氧化物的V-Sb-Nb/Ti催化剂及制备方法: CN101862651A[P]. 2010-10-20. |
GAO Xiang, LUO Zhongyang, CEN Kefa, et al. V-Sb-Nb for selective catalytic reduction of nitrogen oxides Ti catalyst and preparation method: CN101862651A[P]. 2010-10-20. | |
63 | 陆强, 胡斌. 一种具有抗砷中毒性能的SCR脱硝催化剂及其制备方法: CN108160069B[P]. 2020-07-14. |
LU Qiang, HU Bin. A SCR denitration catalyst with arsenic poisoning resistance and its preparation method: CN108160069B[P]. 2020-07-14. | |
64 | LI Gehua, MAO Dongsen, CHAO Mengxi, et al. Significantly enhanced Pb resistance of a Co-modified Mn-Ce-O x /TiO2 catalyst for low-temperature NH3-SCR of NO x [J]. Catalysis Science & Technology, 2020, 10(18): 6368-6377. |
65 | 徐托雨, 蔡思翔. 硫酸化改性对TiO2负载的铈基脱硝催化剂的活性及抗碱金属性能的影响[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 25-33. |
XU Tuoyu, CAI Sixiang. Effect of sulfation on the activity and alkali resistance of TiO2-supported cerium-based deNO x catalysts[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(1): 25-33. | |
66 | ZHA Kaiwen, FENG Chong, HAN Lupeng, et al. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NO x : XAFS and in situ DRIFTs study[J]. Chemical Engineering Journal, 2020, 381: 122764. |
67 | GAO Shan, WANG Penglu, CHEN Xiongbo, et al. Enhanced alkali resistance of CeO2/SO4 2--ZrO2 catalyst in selective catalytic reduction of NO x by ammonia[J]. Catalysis Communications, 2014, 43: 223-226. |
68 | SKOTTE Johannes, BOGHOSIAN Soghomon, KUSTOV Arkady, et al. Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia: Influence of doping with potassium[J]. Journal of Catalysis, 2007, 251(2): 459-473. |
69 | KUSTOV A L, RASMUSSEN S B, FEHRMANN R, et al. Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases[J]. Applied Catalysis B: Environmental, 2007, 76(1/2): 9-14. |
70 | PUTLURU Siva Sankar Reddy, MOSSIN Susanne, RIISAGER Anders, et al. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia[J]. Catalysis Today, 2011, 176(1): 292-297. |
71 | ZHENG Yang, GUO Yangyang, SHAN Wenpo, et al. Revealing the Ca resistance enhancement mechanism for the NH3-SCR reaction over VTi catalyst by CuO modification[J]. Applied Catalysis A: General, 2022, 637: 118606. |
72 | HU Wenshuo, ZHANG Yuhong, LIU Shaojun, et al. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2017, 206: 449-460. |
73 | WANG Penglu, YAN Lijun, GU Yundong, et al. Poisoning-resistant NO x reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts[J]. Environmental Science & Technology, 2020, 54(10): 6396-6405. |
74 | KANG Lin, HAN Lupeng, HE Jiebing, et al. Improved NO x reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts[J]. Environmental Science & Technology, 2019, 53(2): 938-945. |
75 | 李想. 一种提升抗砷中毒性能的脱硝催化剂及其制备方法和应用: CN108435159A[P]. 2021-06-04. |
LI Xiang. Denitration catalyst for improving arsenic poisoning resistance as well as preparation method and application of denitration catalyst: CN108435159A[P]. 2021-06-04. | |
76 | 黄锐, 刘红辉, 平原, 等. 一种适用于高砷烟气的蜂窝式脱硝催化剂及其制备方法: CN106179319B[P]. 2019-03-29. |
HUANG Rui, LIU Honghui, PING Yuan, et al. Honeycomb de-nitration catalyst suitable for high-arsenic fume and preparation method of honeycomb de-nitration catalyst: CN106179319B[P]. 2019-03-29. | |
77 | ZHAN Sihui, ZHANG He, ZHANG Yu, et al. Efficient NH3-SCR removal of NO x with highly ordered mesoporous WO3(χ)-CeO2 at low temperatures[J]. Applied Catalysis B: Environmental, 2017, 203: 199-209. |
78 | HUANG Chunying, GUO Ruitang, PAN Weiguo, et al. SCR of NO x by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: The improved K resistance[J]. Journal of the Energy Institute, 2019, 92(5): 1364-1378. |
79 | HUANG Zhiwei, LI Hao, GAO Jiayi, et al. Alkali- and sulfur-resistant tungsten-based catalysts for NO x emissions control[J]. Environmental Science & Technology, 2015, 49(24): 14460-14465. |
80 | HU Pingping, HUANG Zhiwei, GU Xiao, et al. Alkali-resistant mechanism of a hollandite deNO x catalyst[J]. Environmental Science & Technology, 2015, 49(11): 7042-7047. |
81 | WANG Penglu, WANG Haiqiang, CHEN Xiongbo, et al. Novel SCR catalyst with superior alkaline resistance performance: Enhanced self-protection originated from modifying protonated titanate nanotubes[J]. Journal of Materials Chemistry A, 2015, 3(2): 680-690. |
82 | CHANG Huazhen, ZHANG Tao, DANG Hao, et al. Fe2O3@SiTi core-shell catalyst for the selective catalytic reduction of NO x with NH3: Activity improvement and HCl tolerance[J]. Catalysis Science & Technology, 2018, 8(13): 3313-3320. |
83 | 吴忠标, 王芃芦, 王海强, 等. 一种具有抗中毒性能的氧化钒纳米管脱硝催化剂及其制备方法: CN106140146B[P]. 2018-09-11. |
WU Zhongbiao, WANG Penglu, WANG Haiqiang, et al. Vanadium oxide nanotube denitration catalyst with anti-poisoning performance and preparation method of catalyst: CN106140146B[P]. 2018-09-11. | |
84 | 张登松, 施利毅, 查凯文, 等. 抗碱金属中毒的脱硝催化剂及其制备方法: CN108607602B[P]. 2021-12-03. |
ZHANG Dengsong, SHI Liyi, ZHA Kaiwen, et al. Denitration catalyst capable of resisting alkali metal poisoning and preparation method thereof: CN108607602B[P]. 2021-12-03. | |
85 | 胡小夫, 汪洋, 耿宣, 等. 一种抗砷抗碱金属中毒的SCR脱硝催化剂及其制备方法: CN109603814B[P]. 2021-11-09. |
HU Xiaofu, WANG Yang, GENG Xuan, et al. Arsenism and alkalosis resistant SCR denitration catalyst and preparing method thereof: CN109603814B[P]. 2021-11-09. | |
86 | 陆强, 裴鑫琦, 吴洋文, 等. 一种薄壁蜂窝式低温抗硫SCR脱硝催化剂及其制备方法: CN110354843B[P]. 2020-09-22. |
LU Qiang, PEI Xinqi, WU Yangwen, et al. Thin-wall honeycomb type low-temperature sulfur-resistant SCR denitration catalyst and preparation method thereof: CN110354843B[P]. 2020-09-22. | |
87 | 曾红, 刘平乐, 张喻升, 等. 表面涂覆型低温脱硝催化剂的开发与中试应用[J]. 过程工程学报, 2017, 17(6): 1208-1216. |
ZENG Hong, LIU Pingle, ZHANG Yusheng, et al. Development and pilot test of surface-coating SCR denitration catalyst at low temperature[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1208-1216. | |
88 | 李歌, 王宝冬, 马子然, 等. 氢化TiO2脱硝催化剂及其制备方法和应用: CN110743581A[P]. 2020-02-04. |
LI Ge, WANG Baodong, MA Ziran, et al. Hydrogenated-TiO catalyst for denitration and preparation method and application of hydrogenated-TiO catalyst: CN110743581A[P]. 2020-02-04. | |
89 | LI Ge, WANG Baodong, MA Ziran, et al. An anti-poisoning defective catalyst without metal active sites for NH3-SCR via in situ stabilization[J]. EES Catalysis, 2023, 1(2): 134-143. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[3] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[4] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[5] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[6] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[7] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[8] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[9] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[10] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[11] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[12] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
[13] | YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29. |
[14] | YANG Zheng, XIE Yongli, YANG Guangyao, ZHANG Lizhong, LIU Yunxiang. Application analysis of direct cooling exhaust air heat pump system in Xiaobaodang coal mine [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 643-647. |
[15] | WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |