Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 594-604.DOI: 10.16085/j.issn.1000-6613.22020-1402
• Invited review • Previous Articles Next Articles
Yitao LIU1(), Minghui ZHU1, Zixu YANG1, Bo MENG2, Weifeng TU2, Yifan HAN1,2()
Received:
2020-07-20
Revised:
2020-11-14
Online:
2021-02-09
Published:
2021-02-05
Contact:
Yifan HAN
刘义涛1(), 朱明辉1, 杨子旭1, 孟博2, 涂维峰2, 韩一帆1,2()
通讯作者:
韩一帆
作者简介:
刘义涛(1994—),男,博士研究生,研究方向为化学工程。E-mail:基金资助:
CLC Number:
Yitao LIU, Minghui ZHU, Zixu YANG, Bo MENG, Weifeng TU, Yifan HAN. Advances of catalysts for direct synthesis of lower olefins from syngas[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604.
刘义涛, 朱明辉, 杨子旭, 孟博, 涂维峰, 韩一帆. 煤制化学品:合成气直接制低碳烯烃催化剂研究进展[J]. 化工进展, 2021, 40(2): 594-604.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.22020-1402
产物 | 主反应 |
---|---|
甲烷 | |
烷烃 | |
烯烃 | |
水气变换 | |
产物及类型 | 副反应 |
醇类 | |
Boudouard反应 | |
催化剂变化 | 反应式 |
催化剂氧化/还原 | |
体相碳化物生成 |
产物 | 主反应 |
---|---|
甲烷 | |
烷烃 | |
烯烃 | |
水气变换 | |
产物及类型 | 副反应 |
醇类 | |
Boudouard反应 | |
催化剂变化 | 反应式 |
催化剂氧化/还原 | |
体相碳化物生成 |
阶段 | 碳化物机理 | 烯醇机理 | CO插入机理 |
---|---|---|---|
链引发 | |||
链增长 | |||
链终止 |
阶段 | 碳化物机理 | 烯醇机理 | CO插入机理 |
---|---|---|---|
链引发 | |||
链增长 | |||
链终止 |
1 | TORRES G H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catal., 2013, 3(9): 2130-2149. |
2 | TIAN P, WEI Y, YE M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5: 1922-1938. |
3 | CAI Guangyu, LIU Zhongmin, SHI Renmin, et al. Light alkenes from syngas via dimethyl ether[J]. Appl. Catalysis, A, 1995, 125(1): 29-38. |
4 | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
5 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
6 | CHENG K, KANG J, ZHANG Q, et al. Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis[J]. Sci. China: Chem., 2017, 60(11): 1382-1385. |
7 | JAMES O O, CHOWDHURY B, MESUBI M A, et al. Reflections on the chemistry of the Fischer-Tropsch synthesis[J]. RSC Advances, 2012, 2(19): 7347-7366. |
8 | BÜSSEMEIER B, FROHNING C D, CORNILS B. Lower olefins via Fischer-Tropsch[J]. Hydrocarbon Processing, 1976, 55(11): 105. |
9 | DRY M E. The Fischer-Tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3/4): 227-241. |
10 | TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
11 | CHANG Q, ZHANG C, LIU C, et al. Relationship between iron carbide phases (ϵ-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalyst[J]. ACS Catalysis, 2018, 8: 3304-3316. |
12 | XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nat. Commun., 2014, 5: 5783. |
13 | LIU Y, CHEN J-F, BAO J, et al. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis, 2015, 5(6): 3905-3909. |
14 | ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
15 | DEN B J P, RADSTAKE P B, BEZEMER G L, et al. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. Journal of the American Chemical Society, 2009, 131(20): 7197-7203. |
16 | BEZEMER G L, BITTER J H, KUIPERS H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964. |
17 | TORRES G H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215. |
18 | O'BRIEN R J, XU L, SPICER R L, et al. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts[J]. Catalysis Today, 1997, 36(3): 325-334. |
19 | MORALES F, WECKHUYSEN B M. Promotion effects in Co-based Fischer-Tropsch catalysis[J]. Catalysis, 2006, 19: 1-40. |
20 | HAYAKAWA H, TANAKA H, FUJIMOTO K. Studies on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2006, 310: 24-30. |
21 | MORADI G R, BASIR M M, TAEB A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catalysis Communications, 2003, 4(1): 27-32. |
22 | TAN K F, CHANG J, BORGNA A, et al. Effect of boron promotion on the stability of cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2011, 280(1): 50-59. |
23 | BÜSSEMEIER B, FROHNING C D, HORN G, et al. Process for the production of unsaturated hydro-carbons: US4455395A[P]. 1984-06-19. |
24 | BÜSSEMEIER B, FROHNING C D, HORN G, et al. Process for the manufacture of unsaturated hydrocarbons: US4564642A[P]. 1986-01-14. |
25 | ROY S C, PRASAD H L, DUTTA P, et al. Conversion of syn-gas to lower alkenes over Fe-TiO2-ZnO-K2O catalyst system[J]. Applied Catalysis A: General, 2001, 220(1): 153-164. |
26 | TIHAY F, ROGER A C, KIENNEMANN A, et al. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catalysis Today, 2000, 58(4): 263-269. |
27 | TIHAY F, POURROY G, RICHARD P M, et al. Effect of Fischer-Tropsch synthesis on the microstructure of Fe-Co-based metal/spinel composite materials[J]. Applied Catalysis A: General, 2001, 206(1): 29-42. |
28 | KALAKKAD D S, SHROFF M D, KÖHLER S, et al. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Applied Catalysis A: General, 1995, 133(2): 335-350. |
29 | VAN D W L, NIEMANTSVERDRIET J W, VAN D K A M, et al. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer-Tropsch reaction[J]. Applied Catalysis, 1982, 2(4): 273-288. |
30 | BROMFIELD T C, COVILLE N J. The effect of sulfide ions on a precipitated iron Fischer-Tropsch catalyst[J]. Applied Catalysis A: General, 1999, 186(1): 297-307. |
31 | BROMFIELD T C, COVILLE N J. Surface characterization of sulfided precipitated-iron Fischer-Tropsch catalysts by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 1997, 119(1): 19-24. |
32 | WU B, BAI L, XIANG H, et al. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel, 2004, 83(2): 205-212. |
33 | GOLDWASSER M R, DORANTES V E, PÉREZ Z M J, et al. Modified iron perovskites as catalysts precursors for the conversion of syngas to low molecular weight alkenes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 193(1): 227-236. |
34 | SHI B, ZHANG Z, LIU Y, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. Journal of Catalysis, 2020, 381: 150-162. |
35 | BAKER B G, CLARK N J, MCARTHUR H, et al. Catalysts: WO1984000702[P]. 1984-03-01. |
36 | TORRES G H M, KOEKEN A C J, BITTER J H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis, 2013, 303: 22-30. |
37 | ZAHNG Z P, ZHANG J, WANG X, et al. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. Journal of Catalysis, 2018, 365: 71-85. |
38 | SUN J, LI X, TAGUCHI A, et al. Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins[J]. ACS Catalysis, 2014, 4(1): 1-8. |
39 | LI Y-P, WANG T-J, WU C-Z, et al. Gasoline-range hydrocarbon synthesis over Co/SiO2/HZSM-5 catalyst with CO2-containing syngas[J]. Fuel Processing Technology, 2010, 91(4): 388-393. |
40 | HE J, LIU Z, YONEYAMA Y, et al. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas[J]. Chemistry-a European Journal, 2006, 12(32): 8296-8304. |
41 | KANG S-H, BAE J W, SAI P P S, et al. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis Letters, 2008, 125(3): 264. |
42 | XU L-Y, WANG Q-X, XU Y-D, et al. Promotion effect of K2O and MnO additives on the selective production of light alkenes via syngas over Fe/silicalite-2 catalysts[J]. Catalysis Letters, 1995, 31(2): 253-266. |
43 | DAS D, RAVICHANDRAN G, CHAKRABARTY D K. Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition[J]. Catalysis Today, 1997, 36(3): 285-293. |
44 | LIU, X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem. Sci., 2018, 9 (20): 4708-4718. |
45 | PAN X, GONG K, CHEN Y. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. 2018, 57 (17): 4692-4696. |
46 | MARKVOORT A J, SANTEN R A, HILBERS P A J, et al. Kinetics of the Fischer-Tropsch reaction[J]. Angew. Chem.: Int. Ed., 2012, 51(36): 9105-9109. |
47 | ZHANG Z P, DAI W W, XU X C, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63(10): 4451-4464. |
48 | DAVIS B H. Fischer-Tropsch synthesis: reaction mechanisms for iron catalysts[J]. Catalysis Today, 2009, 141(1): 25-33. |
49 | VAN D L J, BOTES F G, CIOBICA I M, et al. Fischer-Tropsch synthesis: catalysts and chemistry. In comprehensive inorganic chemistry II[M]. Second Edition, Poeppelmeier J R, Ed., Amsterdam: Elsevier, 2013: 525-557. |
50 | LAHTINEN J, VAARI J, KAURAALA K. Adsorption and structure dependent desorption of CO on Co (0001) [J]. Surface Science, 1998, 418(3): 502-510. |
51 | BEITEL G A, LASKOV A, OOSTERBEEK H, et al. Polarization modulation infrared reflection absorption spectroscopy of CO adsorption on Co (0001) under a high-pressure regime[J]. The Journal of Physical Chemistry, 1996, 100(30): 12494-12502. |
52 | KRISHNAMOORTHY S, LI A, IGLESIA E. Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts[J]. Catalysis Letters, 2002, 80(1): 77-86. |
53 | OJEDA M, NABAR R, NILEKAR A U, et al. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2010, 272(2): 287-297. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |