Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 577-593.DOI: 10.16085/j.issn.1000-6613.32020-1403
• Invited review • Previous Articles Next Articles
Chao ZHANG1(), Yulong ZHANG1, Minghui ZHU1, Bo MENG2, Weifeng TU2, Yifan HAN1,2()
Received:
2020-07-20
Revised:
2020-10-28
Online:
2021-02-09
Published:
2021-02-05
Contact:
Yifan HAN
张超1(), 张玉龙1, 朱明辉1, 孟博2, 涂维峰2, 韩一帆1,2()
通讯作者:
韩一帆
作者简介:
张超(1994—),男,博士研究生,研究方向为CO2高值化利用。E-mail:基金资助:
CLC Number:
Chao ZHANG, Yulong ZHANG, Minghui ZHU, Bo MENG, Weifeng TU, Yifan HAN. New pathway for CO2 high-valued utilization: Fe-based catalysts for CO2 hydrogenation to low olefins[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 577-593.
张超, 张玉龙, 朱明辉, 孟博, 涂维峰, 韩一帆. CO2 高值化利用新途径:铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展, 2021, 40(2): 577-593.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.32020-1403
1 | Mauna Loa Observatory. NOAA-NCEI state of the climate: global analysis [EB/OL]. [2019-10-07]. . |
2 | MEEHL Gerald A, WASHINGTON Warren M, COLLINS William D, et al. How much more global warming and sea level rise?[J]. Science, 2005, 307: 1769-1772. |
3 | WANG Wei, WANG Shengping, MA Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Review, 2011, 40: 3703-3727. |
4 | DATTA Shuvo Jit, KHUMNOON Chutharat, Zhen Hao LEE, et al. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350: 302-306. |
5 | BROECKER Wallace S. CO2 Arithmetic[J]. Science, 2007, 315: 1371-1371. |
6 | MATSUMOTO Hiroyo, HAMASAKI Akihiro, SIOJI Norio, et al. Influence of CO2, SO2 and NO in flue gas on microalgae productivity[J]. Journal of Chemical Engineering of Japan, 1997, 30: 620-624. |
7 | 但世辉,方向东. 二氧化碳的另一面——海洋酸化[J]. 化学教育, 2013(9): 9-13. |
Shihui DAN,FANG Xiangdong. The other side of carbon dioxide—ocean acidification[J]. Chinese Journal of Chemical Education, 2013(9): 9-13. | |
8 | BP. Statistical Review of World Energy[EB/OL]. [2017-06]. . |
9 | 王文蔚,王祖明. 能源研究与利用[J]. 中国能源可持续发展的途径, 2018(6): 41-45. |
WANG Wenwei,WANG Zuming. Paths for sustainable development of China’s energy[J]. Energy Research & Utilization, 2018(6): 41-45. | |
10 | 中国石油新闻中心. 中国原油对外依存度近70%天然气超过40%[EB/OL]. [2020-05-25] . |
China Petroleum News Center. China relies on nearly 70% of its crude oil and more than 40% of its natural gas[EB/OL]. [2020-05-25]. . | |
11 | 赵晓飞. 工业经济回暖,能源市场小“惊喜”不断[J]. 中国石油和化工, 2017(8): 20-22. |
ZHAO Xiaofei. The recovery of industrial economy and the "surprises" of energy market[J]. China Petroleum and Chemical Industry, 2017(8): 20-22. | |
12 | 李妍,花翠,张玉春. 碳交易机制内的限排企业行为对策研究——以北京碳交易市场为例[J]. 工业技术与职业教育, 2018, 16(4): 83-86. |
LI Yan, HUA Cui, ZHANG Yuchun. Behavioral strategies of restricted enterprises in carbon trading mechanism——A case study of Beijing carbon trading market[J]. Industrial Technology and Vocational Education, 2018,16(4): 83-86. | |
13 | POROSOFF Marc D, YAN Binhang, CHEN Jingguang G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy & Environmental Science, 2016, 9: 62-73. |
14 | AYGüN A, YENISOY-KARAKAŞ S, DUMAN I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties[J]. Microporous and Mesoporous Materials, 2003, 66: 189-195. |
15 | DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy Environmental Science, 2010, 3: 884-890. |
16 | MALYSHENKO S P, GRYAZNOV A N, FILATOV N I. High-pressure H2/O2-steam generators and their possible applications[J]. International Journal of Hydrogen Energy, 2004, 29: 589-596. |
17 | 付汉卿, 马春令, 刘刚, 等. 富余氢气的综合利用[J]. 中国氯碱, 2011(9): 15-16. |
FU Hanqing, MA Chunling, LIU Gang, et al. Comprehensive utilization of surplus hydrogen[J]. China Chlor-Alkali, 2011(9): 15-16. | |
18 | 立鼎产业研究网. 2018年全球乙烯供需稳增,开工率高位[EB/OL]. [2018-04-11] . |
Leading Industry Research. In2018, global ethylene supply and demand increased steadily, with a high operating rate[EB/OL]. [2018-04-11]. . | |
19 | 唐可. 2019重点产品产能预警报告发布[J]. 中国石油与化工, 2019(5): 78. |
TANG Ke. 2019 Key product capacity warning report was released[J].China Petroleum and Chemical Industry, 2019(5): 78. | |
20 | WANG Wan-Hui, HIMEDA Yuichiro, MUCKERMAN James T, et al. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chemical Reviews, 2015, 115: 12936-12973. |
21 | CHENG Ya-Hsin, NGUYEN Van-Huy, CHAN Hsiang-Yu, et al. Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor[J]. Applied Energy, 2015, 147: 318-324. |
22 | Jai Hyun KOH, Da Hye WON, Taedaehyeong EOM, et al. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst[J]. ACS Catalysis, 2017, 7: 5071-5077. |
23 | BEBELIS S, KARASALI H, VAYENAS C G. Electrochemical promotion of the CO2 hydrogenation on Pd/YSZ and Pd/β-Al2O3 catalyst-electrodes[J]. Solid State Ionics, 2008, 179: 1391-1395. |
24 | HUFF Chelsea A, SANFORD Melanie S. Cascade catalysis for the Homogeneous hydrogenation of CO2 to methanol[J]. Journal of the American Chemical Society, 2011, 133: 18122-18125. |
25 | ARENA Francesco, ITALIANO Giuseppe, BARBERA Katia, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350: 16-23. |
26 | FISCHER Franz, TROPSCH Hans. Über die direkte Synthese von Erdöl-Kohlenwasserstoffen bei gewöhnlichem Druck. , Erste Mitteilung[J]. Berichte der deutschen chemischen Gesellschaft, A and B Series, 1926, 59: 830-831. |
27 | TORRES GALVIS H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134: 16207-16215. |
28 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351: 1065-1068. |
29 | VISCONTI Carlo Giorgio, MARTINELLI Michela, FALBO Leonardo, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Applied Catalysis B: Environmental, 2017, 200: 530-542. |
30 | GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1: 365-384. |
31 | YANG Ce, ZHAO Huabo, HOU Yanglong, et al. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134: 15814-15821. |
32 | CHEN Ching-Shiun, CHENG Wu-Hsun, LIN Shou-Shiun. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Applied Catalysis A: General, 2003, 238: 55-67. |
33 | MARTIN Oliver, MARTíN Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie: International Edition, 2016, 55: 6261-6265. |
34 | YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. The Journal of Physical Chemistry C, 2012, 116: 7817-7825. |
35 | RUNGTAWEEVORANIT Bunyarat, BAEK Jayeon, ARAUJO Joyce R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano Letters, 2016, 16: 7645-7649. |
36 | GUTTERøD Emil Sebastian, Sigurd ØIEN-ØDEGAARD, BOSSERS Koen, et al. CO2 Hydrogenation over Pt-containing UiO-67 Zr-MOFs—The base case[J]. Industrial & Engineering Chemistry Research, 2017, 56: 13206-13218. |
37 | CHIAVASSA Dante L, BARRANDEGUY Julieta, BONIVARDI Adrian L, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts: Impact of reaction products[J]. Catalysis Today, 2008, 133-135: 780-786. |
38 | QU Jin, ZHOU Xiwen, XU Feng, et al. Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation[J]. The Journal of Physical Chemistry C, 2014, 118: 24452-24466. |
39 | AN Xin, ZUO Yi-Zan, ZHANG Qiang, et al. Dimethyl Ether Synthesis from CO2 hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional catalyst[J]. Industrial & Engineering Chemistry Research, 2008, 47: 6547-6554. |
40 | GAO Wengui, WANG Hua, WANG Yuhao, et al. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts[J]. Journal of Rare Earths, 2013, 31: 470-476. |
41 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54: 140-143. |
42 | ARAKAWA Hironori. Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2[J]. Studies in Surface Science and Catalysis, 1998, 114: 19-30. |
43 | AMOYAL Meital, Roxana VIDRUK-NEHEMYA, LANDAU Miron V, et al. Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation[J]. Journal of Catalysis, 2017, 348: 29-39. |
44 | ZHANG Yulong, FU Donglong, LIU Xianglin, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10: 1272-1276. |
45 | ZHANG Yongqing, JACOBS Gary, SPARKS Dennis E, et al. CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts[J]. Catalysis Today, 2002, 71: 411-418. |
46 | JELETIC Matthew S, MOCK Michael T, APPEL Aaron M, et al. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions[J]. Journal of the American Chemical Society, 2013, 135: 11533-11536. |
47 | YAO Benzhen, MA Wangjing, Sergio GONZALEZ-CORTES, et al. Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen[J]. Greenhouse Gases: Science and Technology, 2017, 7(5): 942-957. |
48 | 余强 刘仲能, 王仰东, 等. 逆水煤气变换催化剂的制备及反应性能[J]. 化学反应工程与工艺, 2014, 30: 421-427. |
YU Qiang, LIU Zhongneng, WANG Yangdong,et al. Preparation and reaction performance of reverse water gas conversion catalyst [J].Chemical Reaction Engineering and Technology, 2014, 30: 421-427. | |
49 | YAO Benzhen, MA Wangjing, Sergio GONZALEZ-CORTES, et al. Thermodynamic study of hydrocarbon synthesis from carbon dioxide and hydrogen[J]. Greenhouse Gases: Science and Technology, 2017, 7: 942-957. |
50 | PRIETO Gonzalo. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis[J]. ChemSusChem, 2017, 10: 1056-1070. |
51 | SCHULZ Hans. Short history and present trends of Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 1999, 186: 3-12. |
52 | PÉREZ-ALONSO F J, OJEDA M, HERRANZ T, et al. Carbon dioxide hydrogenation over Fe-Ce catalysts[J]. Catalysis Communications, 2008, 9: 1945-1948. |
53 | YOU Zhenya, DENG Weiping, ZHANG Qinghong, et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chinese Journal of Catalysis, 2013, 34: 956-963. |
54 | WEI Jian, SUN Jian, WEN Zhiyong, et al. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2016, 6: 4786-4793. |
55 | CHOI Pyoung Ho, Ki-Won JUN, Soo-Jae LEE, et al. Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts[J]. Catalysis Letters, 1996, 40: 115-118. |
56 | XU Longya, WANG Qingxia, LIANG Dongbai, et al. The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation[J]. Applied Catalysis A: General, 1998, 173: 19-25. |
57 | Wilfried NGANTSOUE-HOC, ZHANG Yongqing, O’BRIEN Robert J, et al. Fischer-Tropsch synthesis: activity and selectivity for group Ⅰ alkali promoted iron-based catalysts[J]. Applied Catalysis A: General, 2002, 236: 77-89. |
58 | ZHANG Jianli, LU Shipeng, SU Xiaojuan, et al. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. Journal of CO2 Utilization, 2015, 12: 95-100. |
59 | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
60 | GUO Lisheng, SUN Jian, JI Xuewei, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts[J]. Communications Chemistry, 2018, 1: 11. |
61 | KANGVANSURA Praewpilin, CHEW Ly May, SAENGSUI Worasarit, et al. Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes[J]. Catalysis Today, 2016, 275: 59-65. |
62 | Sung-Chul LEE, JANG Jea-Hun, Byung-Yong LEE, et al. Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component[J]. Journal of Molecular Catalysis A: Chemical, 2004, 210: 131-141. |
63 | Marita NIEMELä, Milja NOKKOSMäKI. Activation of carbon dioxide on Fe-catalysts[J]. Catalysis Today, 2005, 100: 269-274. |
64 | DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts[J]. Catalysis Communications, 2011, 15: 88-92. |
65 | DORNER Robert W, HARDY Dennis R, WILLIAMS Frederick W, et al. K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst’s active phase[J]. Applied Catalysis A: General, 2010, 373: 112-121. |
66 | WILLAUER Heather D, ANANTH Ramagopal, OLSEN Matthew T, et al. Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor[J]. Journal of CO2 Utilization, 2013, 3/4: 56-64. |
67 | AL-DOSSARY M, ISMAIL Adel A, FIERRO J L G, et al. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Applied Catalysis B: Environmental, 2015, 165: 651-660. |
68 | BAI Rongxian, TAN Yisheng, HAN Yizhuo. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts[J]. Fuel Processing Technology, 2004, 86: 293-301. |
69 | YANG Yong, XIANG Hongwei, ZHANG Rongle, et al. A highly active and stable Fe-Mn catalyst for slurry Fischer-Tropsch synthesis[J]. Catalysis Today, 2005, 106: 170-175. |
70 | FALBO Leonardo, MARTINELLI Michela, VISCONTI Carlo Giorgio, et al. Effects of Zn and Mn promotion in Fe-based catalysts used for COxhydrogenation to long-chain hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2017, 56: 13146-13156. |
71 | PRASAD P S SAI, Jong Wook BAE, Ki-Won JUN, et al. Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catalysis Surveys from Asia, 2008, 12: 170-183. |
72 | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
73 | Sang-Sung NAM, Soo-Jae LEE, KIM Ho, et al. Catalytic conversion of carbon dioxide into hydrocarbons over zinc promoted iron catalysts[J]. Energy Conversion and Management, 1997, 38: S397-S402. |
74 | CHOI Yo Han, Eun Cheol RA, KIM Eun Hyup, et al. Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels[J]. ChemSusChem, 2017, 10: 4764-4770. |
75 | WANG Wenjia, JIANG Xiao, WANG Xiaoxing, et al. Fe-Cu bimetallic catalysts for selective CO2 hydrogenation to olefin-rich C2+ hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2018, 57: 4535-4542. |
76 | CHOI Yo Han, JANG Youn Jeong, PARK Hunmin, et al. Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels[J]. Applied Catalysis B: Environmental, 2017, 202: 605-610. |
77 | QIN Zu-zeng, ZHOU Xin-hui, SU Tong-ming, et al. Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts[J]. Catalysis Communications, 2016, 75: 78-82. |
78 | SU Tongming, ZHOU Xinhui, QIN Zuzeng, et al. Intrinsic kinetics of dimethyl ether synthesis from plasma activation of CO2 hydrogenation over Cu-Fe-Ce/HZSM-5[J]. ChemPhysChem, 2017, 18: 299-309. |
79 | CHUN Dong Hyun, PARK Ji Chan, HONG Seok Yong, et al. Highly selective iron-based Fischer-Tropsch catalysts activated by CO2-containing syngas[J]. Journal of Catalysis, 2014, 317: 135-143. |
80 | HU Boxun, GUILD Curtis, SUIB Steven L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products[J]. Journal of CO2 Utilization, 2013, 1: 18-27. |
81 | SUO Zhang-huai, KOU Yuan, NIU Jian-zhong, et al. Characterization of TiO2-, ZrO2- and Al2O3-supported iron catalysts as used for CO2 hydrogenation[J]. Applied Catalysis A: General, 1997, 148: 301-313. |
82 | DING Fanshu, ZHANG Anfeng, LIU Min, et al. CO2 Hydrogenation to hydrocarbons over iron-based catalyst: effects of physicochemical properties of Al2O3 supports[J]. Industrial & Engineering Chemistry Research, 2014, 53: 17563-17569. |
83 | XIE C, CHEN C, YU Y, et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons[J]. Nano Letter, 2017, 17: 3798-3802. |
84 | TORRES GALVIS Hirsa M, BITTER Johannes H, DAVIDIAN Thomas, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134: 16207-16215. |
85 | SAMANTA A, LANDAU M V, VIDRUK-NEHEMYA R, et al. CO2 hydrogenation to higher hydrocarbons on K/Fe-Al-O spinel catalysts promoted with Si, Ti, Zr, Hf, Mn and Ce[J]. Catalysis Science & Technology, 2017, 7: 4048-4063. |
86 | TORRENTE-MURCIANO L, CHAPMAN R S L, NARVAEZ-DINAMARCA A, et al. Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18: 15496-15500. |
87 | ZHANG Zhengpai, DAI Weiwei, XU Xinchao, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63: 4451-4464. |
88 | CHEW Ly May, KANGVANSURA Praewpilin, RULAND Holger, et al. Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation[J]. Applied Catalysis A: General, 2014, 482: 163-170. |
89 | MANNA Kuntal, ZHANG Teng, CARBONI Michaël, et al. Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts[J]. Journal of the American Chemical Society, 2014, 136: 13182-13185. |
90 | László GUCZI, STEFLER G, GESZTI O, et al. CO hydrogenation over cobalt and iron catalysts supported over multiwall carbon nanotubes: effect of preparation[J]. Journal of Catalysis, 2006, 244: 24-32. |
91 | YANG Zhiqiang, GUO Shujing, PAN Xiulian, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J]. Energy & Environmental Science, 2011, 4: 4500-4503. |
92 | GUPTA Sharad, JAIN Vivek K, JAGADEESAN Dinesh. Fine tuning the composition and nanostructure of Fe-based core-shell nanocatalyst for efficient CO2 hydrogenation[J]. ChemNanoMat, 2016, 2: 989-996. |
93 | GAO Yunnan, LIU Shizhen, ZHAO Zhenqing, et al. Heterogeneous catalysis of CO2 hydrogenation to C2+ products[J]. Acta Phys.-Chim. Sin., 2018, 34: 858-872. |
94 | LIU Junhui, ZHANG Anfeng, LIU Min, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. Journal of CO2 Utililization, 2017, 21: 100-107. |
95 | RAMIREZ Adrian, GEVERS Lieven, BAVYKINA Anastasiya, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8: 9174-9182. |
96 | NUMPILAI Thanapa, WITOON Thongthai, CHANLEK Narong, et al. Structure-activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins[J]. Applied Catalysis A: General, 2017, 547: 219-229. |
97 | SU Xiaojuan, ZHANG Jianli, FAN Subing, et al. Effect of preparation of Fe-Zr-K catalyst on the product distribution of CO2 hydrogenation[J]. RSC Advances, 2015, 5: 80196-80202. |
98 | SATTHAWONG Ratchprapa, KOIZUMI Naoto, SONG Chunshan, et al. Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts[J]. Catalysis Today, 2015, 251: 34-40. |
99 | HU Boxun, FRUEH Samuel, GARCES Hector F, et al. Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts[J]. Applied Catalysis B: Environmental, 2013, 132/133: 54-61. |
100 | DING Fanshu, ZHANG Anfeng, LIU Min, et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances, 2014, 4: 8930. |
101 | Sung-Chul LEE, KIM Jun-Sik, SHIN Woo Cheol, et al. Catalyst deactivation during hydrogenation of carbon dioxide: effect of catalyst position in the packed bed reactor[J]. Journal of Molecular Catalysis A: Chemical, 2009, 301: 98-105. |
102 | MENG Qing, DONG Huanli, HU Wenping, et al. Recent progress of high performance organic thin film field-effect transistors[J]. Journal of Materials Chemistry, 2011, 21: 11708-11721. |
103 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Review, 2008, 37: 2758-2781. |
104 | RIEDEL Thomas, SCHAUB Georg, Ki-Won JUN, et al. Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst[J]. Industrial & Engineering Chemistry Research, 2001, 40: 1355-1363. |
105 | ZHU Jie, ZHANG Guanghui, LI Wenhui, et al. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J]. ACS Catalysis, 2020, 10: 7424-7433. |
106 | ZHANG Yulong, FU Donglong, LIU Xianglin, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10: 1272-1276. |
107 | Jyh-Fu LEE, CHERN Wen-Shing, Min-Dar LEE, et al. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium[J]. The Canadian Journal of Chemical Engineering, 1992, 70: 511-515. |
108 | LANDAU Miron V, VIDRUK Roxana, HERSKOWITZ Moti. Sustainable production of green feed from carbon dioxide and hydrogen[J]. ChemSusChem, 2014, 7: 785-794. |
109 | ZHANG Yulong, CAO Chenxi, ZHANG Chao, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |