Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6364-6376.DOI: 10.16085/j.issn.1000-6613.2022-0363
• Industrial catalysis • Previous Articles Next Articles
HUI Yan(), FU Tingjun(), MA Qian, LI Zhong()
Received:
2022-03-10
Revised:
2022-05-14
Online:
2022-12-29
Published:
2022-12-20
Contact:
FU Tingjun, LI Zhong
通讯作者:
付廷俊,李忠
作者简介:
惠燕(1996—),女,硕士研究生,研究方向为分子筛合成与应用。E-mail:2837675038@qq.com。
基金资助:
CLC Number:
HUI Yan, FU Tingjun, MA Qian, LI Zhong. Secondary growth mechanism of nano-ZSM-5 in solution of high SiO2/Al2O3 ratio and its performance of methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6364-6376.
惠燕, 付廷俊, 马倩, 李忠. 纳米ZSM-5在高硅铝比料液中的再生长机制及其甲醇制芳烃性能[J]. 化工进展, 2022, 41(12): 6364-6376.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0363
样品 | 比表面积/m2·g-1 | 体积/cm3·g-1 | ||||
---|---|---|---|---|---|---|
总比表面积(SBET①) | 外比表面积(SExter②) | 微孔比表面积(SMicro②) | 总体积(VTotal③) | 介孔体积(VMeso④) | 微孔体积(VMicro②) | |
N50 | 408 | 53 | 355 | 0.49 | 0.31 | 0.18 |
N50@N50 | 383 | 31 | 352 | 0.30 | 0.13 | 0.17 |
N50@N110 | 394 | 32 | 362 | 0.32 | 0.14 | 0.18 |
N50@N220 | 401 | 37 | 364 | 0.42 | 0.25 | 0.17 |
N50@N440 | 431 | 44 | 387 | 0.48 | 0.29 | 0.19 |
N50@N660 | 434 | 44 | 390 | 0.46 | 0.28 | 0.18 |
样品 | 比表面积/m2·g-1 | 体积/cm3·g-1 | ||||
---|---|---|---|---|---|---|
总比表面积(SBET①) | 外比表面积(SExter②) | 微孔比表面积(SMicro②) | 总体积(VTotal③) | 介孔体积(VMeso④) | 微孔体积(VMicro②) | |
N50 | 408 | 53 | 355 | 0.49 | 0.31 | 0.18 |
N50@N50 | 383 | 31 | 352 | 0.30 | 0.13 | 0.17 |
N50@N110 | 394 | 32 | 362 | 0.32 | 0.14 | 0.18 |
N50@N220 | 401 | 37 | 364 | 0.42 | 0.25 | 0.17 |
N50@N440 | 431 | 44 | 387 | 0.48 | 0.29 | 0.19 |
N50@N660 | 434 | 44 | 390 | 0.46 | 0.28 | 0.18 |
样品 | SiO2/Al2O3① | SiO2/Al2O3② | 酸量③/μmol·g-1 | 强酸/弱酸 | 酸量④/μmol·g-1 | B/L | ||||
---|---|---|---|---|---|---|---|---|---|---|
总量 | 弱酸 | 中强酸 | 强酸 | B酸 | L酸 | |||||
N50 | 72 | 21 | 169.7 | 84.0 | 22.5 | 63.2 | 0.75 | 26.8 | 47.6 | 0.56 |
N50@N50 | 70 | — | 247.5 | 100.1 | 41.8 | 105.6 | 1.06 | — | — | — |
N50@N110 | 77 | 27 | 194.9 | 85.2 | 33.8 | 75.9 | 0.89 | 37.1 | 19.8 | 1.87 |
N50@N220 | 87 | 46 | 194.9 | 70.4 | 21.0 | 103.4 | 1.47 | 38.2 | 12.0 | 3.19 |
N50@N440 | 94 | — | 142.6 | 41.9 | 19.6 | 81.1 | 1.93 | — | — | — |
N50@N660 | 106 | 50 | 125.6 | 42.3 | 15.4 | 67.9 | 1.61 | 4.0 | 15.6 | 0.25 |
样品 | SiO2/Al2O3① | SiO2/Al2O3② | 酸量③/μmol·g-1 | 强酸/弱酸 | 酸量④/μmol·g-1 | B/L | ||||
---|---|---|---|---|---|---|---|---|---|---|
总量 | 弱酸 | 中强酸 | 强酸 | B酸 | L酸 | |||||
N50 | 72 | 21 | 169.7 | 84.0 | 22.5 | 63.2 | 0.75 | 26.8 | 47.6 | 0.56 |
N50@N50 | 70 | — | 247.5 | 100.1 | 41.8 | 105.6 | 1.06 | — | — | — |
N50@N110 | 77 | 27 | 194.9 | 85.2 | 33.8 | 75.9 | 0.89 | 37.1 | 19.8 | 1.87 |
N50@N220 | 87 | 46 | 194.9 | 70.4 | 21.0 | 103.4 | 1.47 | 38.2 | 12.0 | 3.19 |
N50@N440 | 94 | — | 142.6 | 41.9 | 19.6 | 81.1 | 1.93 | — | — | — |
N50@N660 | 106 | 50 | 125.6 | 42.3 | 15.4 | 67.9 | 1.61 | 4.0 | 15.6 | 0.25 |
样品 | 选择性/% | 氢转移指数① | 丙烯/乙烯(P/E) | ||||||
---|---|---|---|---|---|---|---|---|---|
甲烷 | 乙烷 | 丙烷 | 丁烷 | 乙烯 | 丙烯 | 丁烯 | |||
N50 | 0.7 | 0.4 | 4.4 | 17.1 | 8.5 | 21.5 | 16.3 | 0.17 | 2.53 |
N50@N50 | 1.8 | 0.3 | 6.0 | 17.4 | 9.5 | 19.9 | 13.5 | 0.23 | 2.09 |
N50@N110 | 1.3 | 0.2 | 5.3 | 16.9 | 8.8 | 19.9 | 14.0 | 0.21 | 2.27 |
N50@N220 | 1.7 | 0.3 | 6.9 | 15.6 | 8.4 | 18.8 | 13.1 | 0.27 | 2.23 |
N50@N440 | 1.4 | 0.3 | 5.6 | 13.4 | 8.2 | 22.3 | 16.7 | 0.20 | 2.72 |
N50@N660 | 1.7 | 0.3 | 5.2 | 12.8 | 9.0 | 24.3 | 18.3 | 0.18 | 2.71 |
样品 | 选择性/% | 氢转移指数① | 丙烯/乙烯(P/E) | ||||||
---|---|---|---|---|---|---|---|---|---|
甲烷 | 乙烷 | 丙烷 | 丁烷 | 乙烯 | 丙烯 | 丁烯 | |||
N50 | 0.7 | 0.4 | 4.4 | 17.1 | 8.5 | 21.5 | 16.3 | 0.17 | 2.53 |
N50@N50 | 1.8 | 0.3 | 6.0 | 17.4 | 9.5 | 19.9 | 13.5 | 0.23 | 2.09 |
N50@N110 | 1.3 | 0.2 | 5.3 | 16.9 | 8.8 | 19.9 | 14.0 | 0.21 | 2.27 |
N50@N220 | 1.7 | 0.3 | 6.9 | 15.6 | 8.4 | 18.8 | 13.1 | 0.27 | 2.23 |
N50@N440 | 1.4 | 0.3 | 5.6 | 13.4 | 8.2 | 22.3 | 16.7 | 0.20 | 2.72 |
N50@N660 | 1.7 | 0.3 | 5.2 | 12.8 | 9.0 | 24.3 | 18.3 | 0.18 | 2.71 |
样品 | 积炭量/g·gcat-1 | 积炭速率/g·gcat-1·h-1 |
---|---|---|
N50 | 0.21 | 2.8×10-3 |
N50@N50 | 0.13 | 2.6×10-3 |
N50@N110 | 0.14 | 2.1×10-3 |
N50@N220 | 0.14 | 2.1×10-3 |
N50@N440 | 0.13 | 1.8×10-3 |
N50@N660 | 0.12 | 2.4×10-3 |
样品 | 积炭量/g·gcat-1 | 积炭速率/g·gcat-1·h-1 |
---|---|---|
N50 | 0.21 | 2.8×10-3 |
N50@N50 | 0.13 | 2.6×10-3 |
N50@N110 | 0.14 | 2.1×10-3 |
N50@N220 | 0.14 | 2.1×10-3 |
N50@N440 | 0.13 | 1.8×10-3 |
N50@N660 | 0.12 | 2.4×10-3 |
1 | LI Teng, SHOINKHOROVA Tuiana, GASCON Jorge, et al. Aromatics production via methanol-mediated transformation routes[J]. ACS Catalysis, 2021, 11(13): 7780-7819. |
2 | 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. |
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020. | |
3 | 米多, 王涛, 田佰和. 国内外芳烃主要产品市场分析[J]. 化学工业, 2020, 38(4): 57-67. |
MI Duo, WANG Tao, TIAN Baihe. Analysis of the main aromatics market at home and abroad[J]. Chemical Industry, 2020, 38(4): 57-67. | |
4 | ZHANG Dan, YANG Minbo, FENG Xiao, et al. Integration of methanol aromatization with light hydrocarbon aromatization toward increasing aromatic yields: conceptual process designs and comparative analysis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11376-11388. |
5 | ZHANG Jingui, QIAN Weizhong, KONG Chuiyan, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5): 2982-2988. |
6 | CHANG Clarence D, SILVESTRI Anthony J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259. |
7 | MA Yunhai, CAI Dali, LI Yiru, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study[J]. RSC Advances, 2016, 6(78): 74797-74801. |
8 | YARULINA Irina, CHOWDHURY Abhishek Dutta, MEIRER Florian, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1(6): 398-411. |
9 | METZGER Kara E, MOYER Megan M, TREWYN Brian G. Tandem catalytic systems integrating biocatalysts and inorganic catalysts using functionalized porous materials[J]. ACS Catalysis, 2021, 11(1): 110-122. |
10 | YARULINA Irina, DE WISPELAERE Kristof, BAILLEUL Simon, et al. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process[J]. Nature Chemistry, 2018, 10(8): 804-812. |
11 | GAO Yan, ZHENG Binghui, WU Guang, et al. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization[J]. RSC Advances, 2016, 6(87): 83581-83588. |
12 | MA Hao, SUN Yuan, YU Junping, et al. Theoretical study on the influence of ZSM-5 zeolite with different structures for methanol to aromatics[J]. Microporous and Mesoporous Materials, 2020, 294: 109838-109847. |
13 | MANDERSLOOT W G B, NICOLAIDES C P, SCURRELL M S. Comments on the effect of the acidic strength of silica-alumina in the conversion of methanol to hydrocarbons[J]. Applied Catalysis, 1986, 27(2): 393-396. |
14 | BI Yi, WANG Yingli, CHEN Xin, et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chinese Journal of Catalysis, 2014, 35(10): 1740-1751. |
15 | LI Junhua, WANG Lina, ZHANG Dan, et al. Effect of ZSM-5 acid modification on aromatization performance of methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 957-963. |
16 | MIYAKE Koji, HIROTA Yuichiro, Kaito ONO, et al. Selective production of benzene, toluene and p-xylene (BTpX) from various C1-3 feedstocks over ZSM-5/silicalite-1 core-shell zeolite catalyst[J]. ChemistrySelect, 2016, 1(5): 967-969. |
17 | YANG Junhao, GONG Ke, MIAO Dengyun, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal of Energy Chemistry, 2019, 35: 44-48. |
18 | WANG Kai, DONG Mei, NIU Xianjun, et al. Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology[J]. Catalysis Science & Technology, 2018, 8(21): 5646-5656. |
19 | 董道敏, 刘宾, 柴永明, 等. 动态水热法制备silicalite-1分子筛膜包覆多孔缺陷Al2O3微球[J]. 化工进展, 2018, 37(10): 3943-3948. |
DONG Daomin, LIU Bin, CHAI Yongming, et al. Dynamic hydrothermal synthesis of silicalite-1 zeolite membrane to encapsulate defective porous alumina spheres[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3943-3948. | |
20 | XIE Chenlu, CHEN Chen, YU Yi, et al. Tandem catalysis for CO2 hydrogenation to C2—C4 hydrocarbons[J]. Nano Letters, 2017, 17(6): 3798-3802. |
21 | XU Yanfei, MA Guangyuan, BAI Jingyang, et al. Yolk@shell FeMn@hollow HZSM-5 nanoreactor for directly converting syngas to aromatics[J]. ACS Catalysis, 2021, 11(8): 4476-4485. |
22 | XU Guohao, ZHU Xuedong. A core-shell structured Zn/SiO2@ZSM-5 catalyst: preparation and enhanced catalytic properties in methane co-aromatization with propane[J]. Applied Catalysis B: Environmental, 2021, 293: 120241-120249. |
23 | WANG Xiaoxing, ZHANG Junfeng, ZHANG Tao, et al. Mesoporous ZnZSM-5 zeolites synthesized by one-step desilication and reassembly: a durable catalyst for methanol aromatization[J]. RSC Advances, 2016, 6(28): 23428-23437. |
24 | CUI Tianlu, LI Xinhao, Libing LYU, et al. Nanoscale Kirkendall growth of silicalite-1 zeolite mesocrystals with controlled mesoporosity and size[J]. Chemical Communications, 2015, 51(63): 12563-12566. |
25 | JIA Yanming, WANG Junwen, ZHANG Kan, et al. Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol[J]. Powder Technology, 2018, 328: 415-429. |
26 | SUN Minghui, ZHOU Jian, HU Zhiyi, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
27 | TAO Shuo, LI Xiaolei, WANG Xiaoge, et al. Facile synthesis of hierarchical nanosized single-crystal aluminophosphate molecular sieves from highly homogeneous and concentrated precursors[J]. Angewandte Chemie International Edition, 2020, 59(9): 3455-3459. |
28 | ZHU Jie, ZHU Yihan, ZHU Liangkui, et al. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template[J]. Journal of the American Chemical Society, 2014, 136(6): 2503-2510. |
29 | JAMIL Anas Karrar, MURAZA Oki, AL-AMER Adnan M. The role of alcohols and diols as co-solvents in fabrication of TON zeolite[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 112-119. |
30 | CHEN Xiaoxin, YAN Wenfu, CAO Xuejing, et al. Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis[J]. Microporous and Mesoporous Materials, 2009, 119(1/2/3): 217-222. |
31 | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
32 | GOODARZI Farnoosh, HERRERO Irene Pinilla, KALANTZOPOULOS Georgios N, et al. Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion[J]. Microporous and Mesoporous Materials, 2020, 292: 109730-109739. |
33 | JONES Andrew J, IGLESIA Enrique. The strength of Brønsted acid sites in microporous aluminosilicates[J]. ACS Catalysis, 2015, 5(10): 5741-5755. |
34 | JONES Andrew J, CARR Robert T, ZONES Stacey I, et al. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms[J]. Journal of Catalysis, 2014, 312: 58-68. |
35 | KATADA Naonobu, Hirofumi IGI, KIM Jong Ho. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. The Journal of Physical Chemistry B, 1997, 101(31): 5969-5977. |
36 | KALITA Pranjal, GUPTA Narendra M, KUMAR Rajiv. Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies[J]. Journal of Catalysis, 2007, 245(2): 338-347. |
37 | WANG Chao, CHU Yueying, ZHENG Anmin, et al. New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations[J]. Chemistry—a European Journal, 2014, 20(39): 12432-12443. |
38 | Róbert BARTHOS, Tamás BÁNSÁGI, SÜLI ZAKAR Tímea, et al. Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts[J]. Journal of Catalysis, 2007, 247(2): 368-378. |
39 | FENG Chaoqun, SU Xiaofang, WANG Wei, et al. Facile synthesis of ultrafine nanosized ZSM-5 zeolite using a hydroxyl radical initiator for enhanced catalytic performance in the MTG reaction[J]. Microporous and Mesoporous Materials, 2021, 312: 110780-110790. |
40 | FU Tingjun, SHAO Juan, LI Zhong. Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics[J]. Applied Catalysis B: Environmental, 2021, 291: 120098-120113. |
41 | SCHULZ Hans. “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes[J]. Catalysis Today, 2010, 154(3/4): 183-194. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[12] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[13] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |