Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1409-1429.DOI: 10.16085/j.issn.1000-6613.2021-2203
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
GAO Xiaofeng1,2(), HUANG Yongkang2, XU Wenhao2, ZHOU Xian2, YAO Siyu2(), MA Ding1()
Received:
2021-10-28
Revised:
2021-12-06
Online:
2022-03-28
Published:
2022-03-23
Contact:
YAO Siyu,MA Ding
高晓峰1,2(), 黄永康2, 徐文豪2, 周娴2, 姚思宇2(), 马丁1()
通讯作者:
姚思宇,马丁
作者简介:
高晓峰(1989—),男,博士后,研究方向为工业催化。E-mail:基金资助:
CLC Number:
GAO Xiaofeng, HUANG Yongkang, XU Wenhao, ZHOU Xian, YAO Siyu, MA Ding. Oxidative dehydrogenation of propane to propene over boron-based catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1409-1429.
高晓峰, 黄永康, 徐文豪, 周娴, 姚思宇, 马丁. 硼基催化剂丙烷氧化脱氢制丙烯[J]. 化工进展, 2022, 41(3): 1409-1429.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2203
分类 | 催化剂 | 温度/℃ | 转化率/% | 选择性/% | 产率/golefin·gcat-1·h-1 | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
C4= | C3= | C2= | CO | CO2 | ||||||
BN基催化剂 | h-BN | 490 | 14 | — | 79 | 12 | 9 | — | 0.5 | [ |
BNNTs | 490 | 16.5 | — | 72 | — | — | — | 3.7 | [ | |
高比表面积BN | 525 | 24 | — | 69 | — | — | — | 0.04 | [ | |
羟化BN | 530 | 20.6 | — | 80.6 | 10.7 | 7.9 | 0.5 | 7.74 | [ | |
SS-BNNSs | 490 | 20 | — | 78 | 10 | — | — | — | [ | |
介孔B x CN | 350 | 6.7 | — | 89.4 | — | — | — | 0.05 | [ | |
h-BN/堇青石 | 535 | 17 | — | 82.1 | 14.2 | 3.7 | — | 18.6 | [ | |
B2O3基催化剂 | B2O3@BPO4-800 | 550 | 24.7 | — | 66.4 | 18.4 | 5.2 | 0.2 | 0.8 | [ |
B2O3/SBA-15 | 450 | 14.8 | — | 73.3 | 14.1 | 10.8 | 1.8 | 1.0 | [ | |
B2O3/Al2O3 | 550 | 24.1 | — | 42.6 | 12.5 | 22.1 | 22.5 | 0.4 | [ | |
B2O3-O CNTs | 400 | 4.6 | — | 70 | — | — | — | 0.003 | [ | |
B-CNTs | 400 | 0.6 | — | 83 | — | — | — | 0.16 | [ | |
B-AnnealedND | 450 | 1.8 | — | 65 | 2 | 12 | 9 | 0.01 | [ | |
B-mww | 530 | 15 | — | 80.4 | 11.2 | — | — | 0.52 | [ | |
BS-1 | 560 | 41.4 | — | 54.9 | 26.3 | — | — | — | [ | |
BPO4(OM) | 515 | 14.3 | — | 8.25 | 9 | 7.9 | 0.6 | 16 | [ | |
其他B基催化剂 | B4C | 500 | 7 | — | 84.2 | 9.3 | 3.4 | 0.7 | 0.6 | [ |
SiB6 | 535 | 19.2 | — | 82.2 | 12.2 | 5.2 | — | 1.49 | [ | |
B | 490 | 16.4 | — | 77.9 | 10 | 6.6 | 3.6 | 11 | [ | |
Ti2B | 500 | 5.8 | — | 85.4 | 9.1 | 2.1 | 0.4 | 0.5 | [ | |
NiB | 500 | 6.1 | — | 85.4 | 9.3 | 2.2 | 0.3 | 0.4 | [ | |
CO2B/CO3B | 500 | 3.2 | — | 87.9 | 7.9 | 1.5 | 0.2 | 0.2 | [ | |
HfB2 | 500 | 4.2 | — | 87.5 | 7.6 | 2 | 0.2 | 0.2 | [ | |
WB | 500 | 2.5 | — | 87.9 | 7.3 | 1.7 | 0.5 | 0.1 | [ |
分类 | 催化剂 | 温度/℃ | 转化率/% | 选择性/% | 产率/golefin·gcat-1·h-1 | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
C4= | C3= | C2= | CO | CO2 | ||||||
BN基催化剂 | h-BN | 490 | 14 | — | 79 | 12 | 9 | — | 0.5 | [ |
BNNTs | 490 | 16.5 | — | 72 | — | — | — | 3.7 | [ | |
高比表面积BN | 525 | 24 | — | 69 | — | — | — | 0.04 | [ | |
羟化BN | 530 | 20.6 | — | 80.6 | 10.7 | 7.9 | 0.5 | 7.74 | [ | |
SS-BNNSs | 490 | 20 | — | 78 | 10 | — | — | — | [ | |
介孔B x CN | 350 | 6.7 | — | 89.4 | — | — | — | 0.05 | [ | |
h-BN/堇青石 | 535 | 17 | — | 82.1 | 14.2 | 3.7 | — | 18.6 | [ | |
B2O3基催化剂 | B2O3@BPO4-800 | 550 | 24.7 | — | 66.4 | 18.4 | 5.2 | 0.2 | 0.8 | [ |
B2O3/SBA-15 | 450 | 14.8 | — | 73.3 | 14.1 | 10.8 | 1.8 | 1.0 | [ | |
B2O3/Al2O3 | 550 | 24.1 | — | 42.6 | 12.5 | 22.1 | 22.5 | 0.4 | [ | |
B2O3-O CNTs | 400 | 4.6 | — | 70 | — | — | — | 0.003 | [ | |
B-CNTs | 400 | 0.6 | — | 83 | — | — | — | 0.16 | [ | |
B-AnnealedND | 450 | 1.8 | — | 65 | 2 | 12 | 9 | 0.01 | [ | |
B-mww | 530 | 15 | — | 80.4 | 11.2 | — | — | 0.52 | [ | |
BS-1 | 560 | 41.4 | — | 54.9 | 26.3 | — | — | — | [ | |
BPO4(OM) | 515 | 14.3 | — | 8.25 | 9 | 7.9 | 0.6 | 16 | [ | |
其他B基催化剂 | B4C | 500 | 7 | — | 84.2 | 9.3 | 3.4 | 0.7 | 0.6 | [ |
SiB6 | 535 | 19.2 | — | 82.2 | 12.2 | 5.2 | — | 1.49 | [ | |
B | 490 | 16.4 | — | 77.9 | 10 | 6.6 | 3.6 | 11 | [ | |
Ti2B | 500 | 5.8 | — | 85.4 | 9.1 | 2.1 | 0.4 | 0.5 | [ | |
NiB | 500 | 6.1 | — | 85.4 | 9.3 | 2.2 | 0.3 | 0.4 | [ | |
CO2B/CO3B | 500 | 3.2 | — | 87.9 | 7.9 | 1.5 | 0.2 | 0.2 | [ | |
HfB2 | 500 | 4.2 | — | 87.5 | 7.6 | 2 | 0.2 | 0.2 | [ | |
WB | 500 | 2.5 | — | 87.9 | 7.3 | 1.7 | 0.5 | 0.1 | [ |
1 | SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653. |
2 | CAVANI F, BALLARINI N, CERICOLA A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? [J]. Catalysis Today, 2007, 127(1/2/3/4): 113-131. |
3 | SANTHOSH KUMAR M, HAMMER N, RØNNING M, et al. The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: new insights by a comprehensive spectroscopic study[J]. Journal of Catalysis, 2009, 261(1): 116-128. |
4 | Global propylene market in 2019[EB/OL]. . |
5 | Global propylene demand in 2025[EB/OL]. . |
6 | SHENG J, YAN B, LU W D, et al. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts[J]. Chemical Society Reviews, 2021, 50(2): 1438-1468. |
7 | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706. |
8 | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
9 | LI J, WEI Y, CHEN J, et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J]. Journal of the American Chemical Society, 2012, 134(2): 836-839. |
10 | GÄRTNER C A, VAN VEEN A C, LERCHER J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects[J]. ChemCatChem, 2013, 5(11): 3196-3217. |
11 | LI Q, SUI Z J, ZHOU X G, et al. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study[J]. Topics in Catalysis, 2011, 54(13/14/15): 888-896. |
12 | VU B K, SONG M B, AHN I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation[J]. Applied Catalysis A: General, 2011, 400(1/2): 25-33. |
13 | XIAO L, MA F, ZHU Y A, et al. Improved selectivity and coke resistance of core-shell alloy catalysts for propane dehydrogenation from first principles and microkinetic analysis[J]. Chemical Engineering Journal, 2019, 377: 120049. |
14 | GRANT J T, CARRERO C A, GOELTL F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science, 2016, 354(6319): 1570-1573. |
15 | AYANDIRAN A A, BAKARE I A, BINOUS H, et al. Oxidative dehydrogenation of propane to propylene over VO x /CaO-γ-Al2O3 using lattice oxygen[J]. Catalysis Science & Technology, 2016, 6(13): 5154-5167. |
16 | DANIELL W, PONCHEL A, KUBA S, et al. Characterization and catalytic behavior of VO x -CeO2 catalysts for the oxidative dehydrogenation of propane[J]. Topics in Catalysis, 2002, 20(1/2/3/4): 65-74. |
17 | YANG S W, IGLESIA E, BELL A T. Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: structural characterization and catalytic function[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8987-9000. |
18 | HOSSAIN M M. Kinetics of oxidative dehydrogenation of propane to propylene using lattice oxygen of VO x /CaO/γAl2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4309-4318. |
19 | ZHANG S H, LIU H C. Insights into the structural requirements for oxidative dehydrogenation of propane on crystalline Mg-V-O catalysts[J]. Applied Catalysis A: General, 2018, 568: 1-10. |
20 | MISHAKOV I V, VEDYAGIN A A, BEDILO A F, et al. Aerogel VO x /MgO catalysts for oxidative dehydrogenation of propane[J]. Catalysis Today, 2009, 144(3/4): 278-284. |
21 | KLISIŃSKA A, SAMSON K, GRESSEL I, et al. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts: I. Oxidative dehydrogenation of propane and ethane[J]. Applied Catalysis A: General, 2006, 309(1): 10-16. |
22 | PAK C, BELL A T, TILLEY T D. Oxidative dehydrogenation of propane over vanadia-magnesia catalysts prepared by thermolysis of OV(OtBu)3 in the presence of nanocrystalline MgO[J]. Journal of Catalysis, 2002, 206(1): 49-59. |
23 | ASCOOP I, GALVITA V V, ALEXOPOULOS K, et al. The role of CO2 in the dehydrogenation of propane over WO x -VO x /SiO2 [J]. Journal of Catalysis, 2016, 335: 1-10. |
24 | CHEN K D, BELL A T, IGLESIA E. Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides[J]. The Journal of Physical Chemistry B, 2000, 104(6): 1292-1299. |
25 | TEDEEVA M A, KUSTOV A L, PRIBYTKOV P V, et al. Dehydrogenation of propane with СО2 on supported CrO x /SiO2 catalysts[J]. Russian Journal of Physical Chemistry A, 2018, 92(12): 2403-2407. |
26 | BOUCETTA C, KACIMI M, ENSUQUE A, et al. Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite[J]. Applied Catalysis A: General, 2009, 356(2): 201-210. |
27 | YUN D, BAEK J, CHOI Y, et al. Promotional effect of Ni on a CrO x catalyst supported on silica in the oxidative dehydrogenation of propane with CO2 [J]. ChemCatChem, 2012, 4(12): 1952-1959. |
28 | VENEGAS J M, MCDERMOTT W P, HERMANS I. Serendipity in catalysis research: boron-based materials for alkane oxidative dehydrogenation[J]. Accounts of Chemical Research, 2018, 51(10): 2556-2564. |
29 | ZHANG X, YOU R, WEI Z Y, et al. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts[J]. Angewandte Chemie, 2020, 132(21): 8119-8123. |
30 | MCDERMOTT W P, CENDEJAS M C, HERMANS I. Recent advances in the understanding of boron-containing catalysts for the selective oxidation of alkanes to olefins[J]. Topics in Catalysis, 2020, 63(19/20): 1700-1707. |
31 | SUN X, DING Y, ZHANG B, et al. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond[J]. Chemical Communications, 2015, 51(44): 9145-9148. |
32 | CHATURBEDY P, AHAMED M, ESWARAMOORTHY M. Oxidative dehydrogenation of propane over a high surface area boron nitride catalyst: exceptional selectivity for olefins at high conversion[J]. ACS Omega, 2018, 3(1): 369-374. |
33 | ZHOU Y L, LIN J, LI L, et al. Enhanced performance of boron nitride catalysts with induction period for the oxidative dehydrogenation of ethane to ethylene[J]. Journal of Catalysis, 2018, 365: 14-23. |
34 | VENEGAS J M, HERMANS I. The influence of reactor parameters on the boron nitride-catalyzed oxidative dehydrogenation of propane[J]. Organic Process Research & Development, 2018, 22(12): 1644-1652. |
35 | SHI L, WANG D Q, SONG W, et al. Edge-hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene[J]. ChemCatChem, 2017, 9(10): 1788-1793. |
36 | SHI L, YAN B, SHAO D, et al. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst[J]. Chinese Journal of Catalysis, 2017, 38(2): 389-395. |
37 | LINARES N, HARTMANN S, GALARNEAU A, et al. Continuous partial hydrogenation reactions by Pd@unconventional bimodal porous titania monolith catalysts[J]. ACS Catalysis, 2012, 2(10): 2194-2198. |
38 | WANG Y, LI W C, ZHOU Y X, et al. Boron nitride wash-coated cordierite monolithic catalyst showing high selectivity and productivity for oxidative dehydrogenation of propane[J]. Catalysis Today, 2020, 339: 62-66. |
39 | WU J C S, CHOU H C. Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2 [J]. Chemical Engineering Journal, 2009, 148(2/3): 539-545. |
40 | HONDA Y, TAKAGAKI A, KIKUCHI R, et al. Oxidative dehydrogenation of ethane using ball-milled hexagonal boron nitride[J]. Chemistry Letters, 2018, 47(9): 1090-1093. |
41 | VENEGAS J M, GRANT J T, MCDERMOTT W P, et al. Selective oxidation of n-butane and isobutane catalyzed by boron nitride[J]. ChemCatChem, 2017, 9(12): 2118-2127. |
42 | YAN B, LI W C, LU A H. Metal-free silicon boride catalyst for oxidative dehydrogenation of light alkanes to olefins with high selectivity and stability[J]. Journal of Catalysis, 2019, 369: 296-301. |
43 | GUO F S, YANG P J, PAN Z M, et al. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene[J]. Angewandte Chemie International Edition, 2017, 56(28): 8231-8235. |
44 | KONDRATENKO E V, BUYEVSKAYA O V, BAERNS M. Characterisation of vanadium-oxide-based catalysts for the oxidative dehydrogenation of propane to propene[J]. Topics in Catalysis, 2001, 15(2/3/4): 175-180. |
45 | LIU Y M, FENG W L, LI T C, et al. Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams(MCF)for the oxidative dehydrogenation of propane to propylene[J]. Journal of Catalysis, 2006, 239(1): 125-136. |
46 | SOLSONA B, BLASCO T, LÓPEZ NIETO J M, et al. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes[J]. Journal of Catalysis, 2001, 203(2): 443-452. |
47 | TRIONFETTI C, BABICH I V, SESHAN K, et al. Formation of high surface area Li/MgO—Efficient catalyst for the oxidative dehydrogenation/cracking of propane[J]. Applied Catalysis A: General, 2006, 310: 105-113. |
48 | PUTRA M D, AL-ZAHRANI S M, ABASAEED A E. Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr-V-Mo catalysts[J]. Catalysis Communications, 2011, 14(1): 107-110. |
49 | LI J H, WANG C C, HUANG C J, et al. Low temperature catalytic performance of nanosized CeNbNiO mixed oxide for oxidative dehydrogenation of propane to propene[J]. Catalysis Letters, 2010, 137(1/2): 81-87. |
50 | LIU Y M, FENG W L, WANG L C, et al. Chromium supported on mesocellular silica foam(MCF)for oxidative dehydrogenation of propane[J]. Catalysis Letters, 2006, 106(3/4): 145-152. |
51 | CURTIN T, MCMONAGLE J B, HODNETT B K. Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cyclohexanone oxime to caprolactam[J]. Applied Catalysis A: General, 1992, 93(1): 91-101. |
52 | XU B Q, CHENG S B, JIANG S, et al. Gas phase beckmann rearrangement of cyclohexanone oxime over zirconia-supported boria catalyst[J]. Applied Catalysis A: General, 1999, 188(1/2): 361-368. |
53 | XU B Q, CHENG S B, ZHANG X, et al. B2O3/ZrO2 for Beckmann rearrangement of cyclohexanone oxime: optimizing of the catalyst and reaction atmosphere[J]. Catalysis Today, 2000, 63(2/3/4): 275-282. |
54 | XU B Q, ZHANG X, YING S F, et al. High temperature calcination for a highly efficient and regenerable B2O3/ZrO2 catalyst for the synthesis of ɛ-caprolactam[J]. Chemical Communications, 2000(13): 1121-1122. |
55 | RAVINDRA D B, NIE Y T, JAENICKE S, et al. Isomerisation of α-pinene oxide over B2O3/SiO2 and Al-MSU catalysts[J]. Catalysis Today, 2004, 96(3): 147-153. |
56 | BUYEVSKAYA O V, BAERNS M. Catalytic selective oxidation of propane[J]. Catalysis Today, 1998, 42(3): 315-323. |
57 | BUYEVSKAYA O V, MÜLLER D, PITSCH I, et al. Selective oxidative conversion of propane to olefins and oxygenates on boria-containing catalysts[J]. Studies in Surface Science and Catalysis, 1998, 119: 671-676. |
58 | COLORIO G, VÉDRINE J C, AUROUX A, et al. Partial oxidation of ethane over alumina-boria catalysts[J]. Applied Catalysis A: General, 1996, 137(1): 55-68. |
59 | LOVE A M, CENDEJAS M C, THOMAS B, et al. Synthesis and characterization of silica-supported boron oxide catalysts for the oxidative dehydrogenation of propane[J]. The Journal of Physical Chemistry C, 2019, 123(44): 27000-27011. |
60 | LU W D, WANG D Q, ZHAO Z C, et al. Supported boron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane[J]. ACS Catalysis, 2019, 9(9): 8263-8270. |
61 | ZHOU Y X, WANG Y, LU W D, et al. A high propylene productivity over B2O3/SiO2@honeycomb cordierite catalyst for oxidative dehydrogenation of propane[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2778-2784. |
62 | RONY P R. Supported liquid-phase catalysts[J]. Chemical Engineering Science, 1968, 23(9): 1021-1034. |
63 | SELVAM T, MACHOKE A, SCHWIEGER W. Supported ionic liquids on non-porous and porous inorganic materials—A topical review[J]. Applied Catalysis A: General, 2012, 445/446: 92-101. |
64 | LIU Q W, WU Y W, XING F S, et al. B2O3@BPO4 sandwich-like hollow spheres as metal-free supported liquid-phase catalysts[J]. Journal of Catalysis, 2020, 381: 599-607. |
65 | YANG H G, ZENG H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening[J]. The Journal of Physical Chemistry B, 2004, 108(11): 3492-3495. |
66 | YUN J H, LOBO R F. Catalytic dehydrogenation of propane over iron-silicate zeolites[J]. Journal of Catalysis, 2014, 312: 263-270. |
67 | ALTVATER N R, DORN R W, CENDEJAS M C, et al. B-MWW zeolite: the case against single-site catalysis[J]. Angewandte Chemie International Edition, 2020, 59(16): 6546-6550. |
68 | QIU B, JIANG F, LU W D, et al. Oxidative dehydrogenation of propane using layered borosilicate zeolite as the active and selective catalyst[J]. Journal of Catalysis, 2020, 385: 176-182. |
69 | ZHOU H, YI X, HUI Y, et al. Isolated boron in zeolite for oxidative dehydrogenation of propane[J]. Science, 2021, 372(6537): 76-80. |
70 | LU W D, GAO X Q, WANG Q G, et al. Ordered macroporous boron phosphate crystals as metal-free catalysts for the oxidative dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2020, 41(12): 1837-1845. |
71 | CHEN Y F, CHUNG Y W, LI S Y. Boron carbide and boron carbonitride thin films as protective coatings in ultra-high density hard disk drives[J]. Surface and Coatings Technology, 2006, 200(12/13): 4072-4077. |
72 | LEE K E, LEE J Y, PARK M J, et al. Preparation of boron carbide thin films for HDD protecting layer[J]. Journal of Magnetism and Magnetic Materials, 2004, 272/273/274/275/276: 2197-2199. |
73 | LYU H, PENG T, WU P, et al. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance[J]. Journal of Materials Chemistry, 2012, 22(18): 9155. |
74 | MU S C, CHEN X, SUN R H, et al. Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells[J]. Carbon, 2016, 103: 449-456. |
75 | GRANT J T, MCDERMOTT W P, VENEGAS J M, et al. Boron and boron-containing catalysts for the oxidative dehydrogenation of propane[J]. ChemCatChem, 2017, 9(19): 3623-3626. |
76 | LEVELES L, SESHAN K, LERCHER J A, et al. Oxidative conversion of propane over lithium-promoted magnesia catalyst: I. Kinetics and mechanism[J]. Journal of Catalysis, 2003, 218(2): 296-306. |
77 | SUI Z J, ZHOU J H, DAI Y C, et al. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers[J]. Catalysis Today, 2005, 106(1/2/3/4): 90-94. |
78 | FRANK B, ZHANG J, BLUME R, et al. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons[J]. Angewandte Chemie International Edition, 2009, 48(37): 6913-6917. |
79 | GOYAL R, SARKAR B, BAG A, et al. Single-step synthesis of hierarchical B x CN: a metal-free catalyst for low-temperature oxidative dehydrogenation of propane[J]. Journal of Materials Chemistry A, 2016, 4(47): 18559-18569. |
80 | CAO L, DAI P C, TANG J, et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal-organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(19): 8755-8762. |
81 | LI H P, ZHANG J R, WU P W, et al. O2 activation and oxidative dehydrogenation of propane on hexagonal boron nitride: mechanism revisited[J]. The Journal of Physical Chemistry C, 2019, 123(4): 2256-2266. |
82 | WU P W, YANG S Z, ZHU W S, et al. Tailoring N-terminated defective edges of porous boron nitride for enhanced aerobic catalysis[J]. Small, 2017, 13(44): 1701857. |
83 | LI L H, CERVENKA J, WATANABE K, et al. Strong oxidation resistance of atomically thin boron nitride nanosheets[J]. ACS Nano, 2014, 8(2): 1457-1462. |
84 | LEE K H, SHIN H J, KUMAR B, et al. Nanocrystalline-graphene-tailored hexagonal boron nitride thin films[J]. Angewandte Chemie International Edition, 2014, 53(43): 11493-11497. |
85 | DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. |
86 | HUANG R, ZHANG B S, WANG J, et al. Direct insight into ethane oxidative dehydrogenation over boron nitrides[J]. ChemCatChem, 2017, 9(17): 3293-3297. |
87 | LOVE A M, THOMAS B, SPECHT S E, et al. Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions[J]. Journal of the American Chemical Society, 2019, 141(1): 182-190. |
88 | ZHANG Z, JIMENEZ-IZAL E, HERMANS I, et al. Dynamic phase diagram of catalytic surface of hexagonal boron nitride under conditions of oxidative dehydrogenation of propane[J]. The Journal of Physical Chemistry Letters, 2019, 10(1): 20-25. |
89 | FERLAT G, CHARPENTIER T, SEITSONEN A P, et al. Boroxol rings in liquid and vitreous B2O3 from first principles[J]. Physical Review Letters, 2008, 101(6): 065504. |
90 | SHI L, WANG D Q, LU A H. A viewpoint on catalytic origin of boron nitride in oxidative dehydrogenation of light alkanes[J]. Chinese Journal of Catalysis, 2018, 39(5): 908-913. |
91 | TIAN J, TAN J, XU M, et al. Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: the role of oxidative coupling of methyl[J]. Science Advances, 2019, 5(3): eaav8063. |
[1] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[2] | ZHANG Mengxu, WANG Hongqin, LI Jin, AN Nihong, DAI Yunsheng, QIAN Yin, SHEN Yafeng. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reaction performance [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. |
[3] | ZHANG Yuchen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Advances in high stable Pt based catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4733-4753. |
[4] | LIN Dong, FENG Xiang, LIU Yibin, CHEN Xiaobo, YANG Chaohe. Research progress on the controllable synthesis of high-performance titanium silicalite and its catalytic propene epoxidation with gaseous hydrogen and oxygen [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2389-2403. |
[5] | ZHANG Yongxiang, WANG Delong, GUO Xiaoyan, SHAO Huaiqi. Structure and performance of CrO x /Ti-Al2O3 catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5879-5886. |
[6] | KONG Weijie, YANG Chunliang, BU Tingting, ZHOU Jinbo. Status of propane oxidative dehydrogenation catalysts in carbon-based and boron-based catalytic system [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 223-230. |
[7] | SHENG Jian, LU Wenduo, YAN Bing, QIU Bin, ZHOU Yuxi, WANG Dongqi, LU Anhui. Progress in oxidative dehydrogenation of light alkanes to olefins over boron-based materials [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1883-1892. |
[8] | GE Hanqing, YIN Wenchao, YANG Guoqing, LIU Zhaotie, LIU Zhongwen. Review on vanadium oxide catalysts for oxidative dehydrogenation of ethylbenzene with CO2 [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1868-1882. |
[9] | WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695. |
[10] | Yichang PAN, Weihong XING. Recent progress of ZIF-8 membrane for propylene/propane separation [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. |
[11] | Shan ZHANG, Huanling ZHANG, Chunyi LI, Guowei WANG. Progress in the study of ethane dehydrogenation catalyst [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2390-2398. |
[12] | Hongyan XIAO,Minggang GUO,Gaohong HE,Ning ZHANG,Aibin HUANG,Jianxiang SHOU,Xuehua RUAN. Retrofit and optimization of steam active reforming (STAR) propane dehydrogenation technology with embedded hydrogen membrane separation [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5257-5263. |
[13] | Linhua ZHU,Zhaohong HE,Tian SI,Yanping HE. Preparation of vanadia pillared catalysts and the catalytic performance in the oxidative dehydrogenation of propane to propylene [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3711-3719. |
[14] | Zhanhua MA,Shuai LI,Aijing JIANG,Jun LI,Lanyi SUN,Changhua AN. Effects of Zn on catalytic performances of PtSn/Al2O3 in propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3670-3678. |
[15] | Kaimin DU, Jie FAN. Research progress on oxidative dehydrogenation of propane to propene [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2697-2706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |