Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 223-230.DOI: 10.16085/j.issn.1000-6613.2021-0120
• Industrial catalysis • Previous Articles Next Articles
KONG Weijie1(), YANG Chunliang2, BU Tingting1, ZHOU Jinbo1()
Received:
2021-01-18
Revised:
2021-04-17
Online:
2021-11-09
Published:
2021-10-25
Contact:
ZHOU Jinbo
通讯作者:
周金波
作者简介:
孔维杰(1994—),男,硕士,助理工程师,研究方向为工业催化。E-mail:基金资助:
CLC Number:
KONG Weijie, YANG Chunliang, BU Tingting, ZHOU Jinbo. Status of propane oxidative dehydrogenation catalysts in carbon-based and boron-based catalytic system[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 223-230.
孔维杰, 杨春亮, 卜婷婷, 周金波. 碳基硼基催化体系丙烷氧化脱氢催化剂的研究进展[J]. 化工进展, 2021, 40(S1): 223-230.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0120
1 | BHASIN M M, MCCAIN J H, VORA B V, et al. Dehydrogenation and oxydehydrogenation of paraffins to olefins[J]. Applied Catalysis A: General, 2001, 221(1/2): 397-419. |
2 | SATTLER J J H B, RUIZ J, SANTILLAN E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20):10613. |
3 | ZHANG Jin, TERRONES Mauricio, PARK Chong Rae, et al. Carbon science in 2016: status, challenges and perspectives[J]. Carbon, 2016, 98:708-732. |
4 | PAN S F, YIN J L, ZHU X L, et al. P-modified microporous carbon nanospheres for direct propane dehydrogenation reactions[J]. Carbon, 2019, 152: 855-864. |
5 | WEN G, DIAO J, WU S, et al. Acid properties of nanocarbons and their application in oxidative dehydrogenation[J]. ACS Catalysis, 2015, 5(6): 3600-3608. |
6 | LIU J, YUE Y, LIU H, et al. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction[J]. ACS Catalysis, 2017, 7(5): 3349-3355. |
7 | MA F, CHEN S, ZHOU H, et al. Revealing the ameliorating effect of chromium oxide on a carbon nanotube catalyst in propane oxidative dehydrogenation[J]. RSC Advances, 2014, 4(77): 40776-40781. |
8 | ZHANG J, LIU X, BLUME R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322(5898): 73-77. |
9 | ZHAO Z, GE G, LI W, et al. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review[J]. Chinese Journal of Catalysis, 2016, 37(5): 644-670. |
10 | LI L, ZHU W, LIU Y, et al. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene[J]. RSC Advances, 2015, 5(69): 56304-56310. |
11 | LIU L, DENG Q F, MA T Y, et al. Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(40):16001-16009. |
12 | LIU L, DENG Q F, HOU X X, et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(31): 15540-15548. |
13 | DENG J, LI M, WANG Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chemistry, 2016, 18(18): 4824-4854. |
14 | LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
15 | HU Z P, ZHAO H, CHEN C, et al. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene[J]. Catalysis Today, 2018, 316: 214-222. |
16 | SHI Y, XIANG Z, DENG J, et al. Synthesis Pd/biomass-based carbon microsheet composite for efficient dehydrogenation from formic acid[J]. Materials Letters, 2019, 237: 61-64. |
17 | HU Z P, ZHANG L F, WANG Z, et al. Bean dregs‐derived hierarchical porous carbons as metal‐free catalysts for efficient dehydrogenation of propane to propylene[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3410-3417. |
18 | RADOVIC L, RODRIGUEZ-REINOSO F. Carbon materials in catalysis[J]. Chemistry and Physics of Carbon, 1996, 25: 243-358. |
19 | PALKAR A, MELIN F, CARDONA C M, et al. Reactivity differences between carbon nano onions (CNOs) prepared by different methods[J]. Chemistry-an Asian Journal, 2007, 2(5): 625-633. |
20 | LIANG C, XIE H, SCHWARTZ V, et al. Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane[J]. Journal of the American Chemical Society, 2009, 131(22): 7735-7741. |
21 | TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofiber assemblies[J]. Nanotechnology, 2006, 17(14): R89. |
22 | CHOI Y S, OH K, KOH H L. Electrospun alumina-nanofiber-supported Pt-Sn catalyst for propane dehydrogenation[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 6897-6903. |
23 | SUI Z J, ZHANG W J, ZHOU J H, et al. Catalytic performances of carbon nanofiber in oxidative dehydrogenation of propane[J]. Petrochemical Technology, 2005, 34(7): 612-616. |
24 | MARCO Y, ROLDÁN L, MUÑOZ E, et al. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane[J]. ChemSusChem, 2014, 7(9): 2496-2504. |
25 | SUI Z, ZHAO T, ZHOU J, et al. Microstructure of carbon nanofibers and their catalytic performance for oxidative dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2005, 26(6): 521-526. |
26 | SUI Z, ZHOU J, DAI Y, et al. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers[J]. Catalysis Today, 2005, 106(1-4): 90-94. |
27 | SUI Z, LI P, ZHAO T, et al. Catalyzing oxidative dehydrogenation of propane over carbon nanofiber supported phosphoric oxides catalysts[J]. Natural Gas Chemical Industry, 2005, 30(6): 1-5, 10. |
28 | CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. |
29 | CAO Y, FATEMI V, FANG S, et al. Magic-angle graphene superlattices: a new platform for unconventional superconductivity[EB/OL]. arXiv: 1803.02342. . |
30 | CURTIS S. ‘Magic-angle’graphene shows unconventional side[J]. Physics World, 2018, 31(4): 4. |
31 | GERBER I, OUBENALI M, BACSA R, et al. Theoretical and experimental studies on the carbon‐nanotube surface oxidation by nitric acid: interplay between functionalization and vacancy enlargement[J]. Chemistry—a European Journal, 2011, 17(41): 11467-11477. |
32 | TANG S, CAO Z. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16558-16565. |
33 | PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299. |
34 | JIANG W, WANG H, ZHANG X, et al. Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis[J]. Science China Chemistry, 2018, 61(10): 1205-1213. |
35 | XUE Y, LI Y, ZHANG J, et al. 2D graphdiyne materials: challenges and opportunities in energy field[J]. Science China Chemistry, 2018, 61(7): 765-786. |
36 | DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218. |
37 | SHELLAIAH M, SUN K W. A review on potential applications of diamond nanomaterials[J]. Cell, 2016, 4: 70. |
38 | ROLDÁND L, BENITO A M, GARCÍA-BORDEJÉ E. Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation[J]. Journal of Materials Chemistry A, 2015, 3(48): 24379-24388. |
39 | SUN X, DING Y, ZHANG B, et al. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond[J]. Chemical Communications, 2015, 51(44): 9145-9148. |
40 | PODYACHEVA O Y, CHEREPANOVA S V, ROMANENKO A I, et al. Nitrogen doped carbon nanotubes and nanofibers: composition, structure, electrical conductivity and capacity properties[J]. Carbon, 2017, 122: 475-483. |
41 | SONG Y, LIU G, YUAN Z Y. N, P and B doped mesoporous carbons for direct dehydrogenation of propane[J]. RSC Advances, 2016, 6(97): 94636-94642. |
42 | GRANT J T, CARRERO C A, GOELTL F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science, 2016, 354(6319): 1570-1573. |
43 | SHI L, WANG D, SONG W, et al. Edge-hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene[J]. ChemCatChem, 2017, 9(10): 1788-1793. |
44 | LOVE M A, THOMAS B, SPECHTE Sarah, et al. Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions[J]. Journal of the American Chemical Society, 2019, 141(1): 182-190. |
45 | GRANT J T, DERMOTT W P MC, VENEGAS J M, et al. Boron and boron-containing catalysts for the oxidative dehydrogenation of propane[J]. ChemCatChem, 2017, 9: 3623-3626. |
46 | SI C, LIAN Z, OLANRELE S O, et al. Revealing the origin of the reactivity of metal-free boron nitride catalysts in oxidative dehydrogenation of propane[J]. Applied Surface Science, 2020, 519: 146241. |
47 | LU W D, WANG D, ZHAO Z, et al. Supported bron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane[J]. ACS Catalysis, 2019, 9(9): 8263-8270. |
48 | YAN B, LI W C, LU A H. Metal-free silicon boride catalyst for oxidative dehydrogenation of light alkanes to olefins with high selectivity and stability[J]. Journal of Catalysis, 2019, 369: 296-301. |
[1] | GAO Xiaofeng, HUANG Yongkang, XU Wenhao, ZHOU Xian, YAO Siyu, MA Ding. Oxidative dehydrogenation of propane to propene over boron-based catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1409-1429. |
[2] | LYU Xiaoqi, LI Hong, ZHAO Zhenyu, LI Xingang, GAO Xin, FAN Xiaolei. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647. |
[3] | GE Hanqing, YIN Wenchao, YANG Guoqing, LIU Zhaotie, LIU Zhongwen. Review on vanadium oxide catalysts for oxidative dehydrogenation of ethylbenzene with CO2 [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1868-1882. |
[4] | SHENG Jian, LU Wenduo, YAN Bing, QIU Bin, ZHOU Yuxi, WANG Dongqi, LU Anhui. Progress in oxidative dehydrogenation of light alkanes to olefins over boron-based materials [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1883-1892. |
[5] | SUN Jinlong, ZHANG Yu, LIU Fuyue, TIAN Haoran, LIU Qifeng. Research progress in degradation of organic pollutants by activation of persulfates with carbon-based catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1653-1666. |
[6] | Shan ZHANG, Huanling ZHANG, Chunyi LI, Guowei WANG. Progress in the study of ethane dehydrogenation catalyst [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2390-2398. |
[7] | Linhua ZHU,Zhaohong HE,Tian SI,Yanping HE. Preparation of vanadia pillared catalysts and the catalytic performance in the oxidative dehydrogenation of propane to propylene [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3711-3719. |
[8] | Kaimin DU, Jie FAN. Research progress on oxidative dehydrogenation of propane to propene [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2697-2706. |
[9] | Linhua ZHU, Zhiyu WU, Tian SI. Methods of introduction of vanadium species on phosphate mesoporous sieves and their influence on the catalytic performance for oxidative dehydrogenation of propane [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2363-2371. |
[10] | Size ZHANG, Chao WAN, Liang ZENG, Dangguo CHENG, Fengqiu CHEN, Jinlong GONG. Oxidative dehydrogenation of butene over bismuth molybdate catalysts: synergetic effect between different crystalline phases [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 334-343. |
[11] | WANG Weitao, LU Ping, MA Yangmin, LI Na, YANG Xiufang. Solid acid catalyst for the esterification of high free fatty acids of Zanthoxylum bungeanum seed oil [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2504-2510. |
[12] | ZHENG Peng1,ZHU Linhua1,MEI Libao2,SI Tian1. Research progress of supported-vanadia mesoporous catalytic materials for oxidative dehydrogenation of propane to propene [J]. Chemical Industry and Engineering Progree, 2013, 32(10): 2392-2395. |
[13] | LI Jing1,DENG Tingyun2,YANG Lin1,CAO Jianxin1. Research progress of adsorption/activation and catalytic hydrogenation of CO2 [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 340-345. |
[14] | YANG Pengkun,LU Jiangyin,XU Yuebing. Development of catalysts for producing olefins from light alkanes with oxidant CO2 [J]. Chemical Industry and Engineering Progree, 2009, 28(4): 639-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |