Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6145-6154.DOI: 10.16085/j.issn.1000-6613.2020-2515
• Materials science and technology • Previous Articles Next Articles
ZHAO Zhijian1(), PU Yuan2, WANG Dan1,2()
Received:
2020-12-16
Revised:
2021-01-24
Online:
2021-11-19
Published:
2021-11-05
Contact:
WANG Dan
通讯作者:
王丹
作者简介:
赵志建(1991—),男,博士研究生,研究方向为功能纳米材料制备及应用。E-mail:基金资助:
CLC Number:
ZHAO Zhijian, PU Yuan, WANG Dan. Construction and application of miniature reactors based on liquid marbles[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6145-6154.
赵志建, 蒲源, 王丹. 液体弹珠微型反应器的设计构建及应用基础[J]. 化工进展, 2021, 40(11): 6145-6154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2515
1 | VIALETTO J, HAYAKAWA M, KAVOKINE N, et al. Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate[J]. Angewandte Chemie International Edition, 2017, 56(52): 16565-16570. |
2 | ICHIMURA K, OH S K, NAKAGAWA M. Light-driven motion of liquids on a photoresponsive surface[J]. Science, 2000, 288(5471): 1624-1626. |
3 | VENANCIO-MARQUES A, BARBAUD F, BAIGL D. Microfluidic mixing triggered by an external LED illumination[J]. Journal of the American Chemical Society, 2013, 135(8): 3218-3223. |
4 | BERNÁ J, LEIGH D A, LUBOMSKA M, et al. Macroscopic transport by synthetic molecular machines[J]. Nature Materials, 2005, 4(9): 704-710. |
5 | 汪伟, 苏瑶瑶, 刘壮, 等. 微流控法可控构建微尺度功能材料[J]. 化工进展, 2019, 38(1): 421-433. |
WANG Wei, SU Yaoyao, LIU Zhuang, et al. Controllable microfluidic fabrication of microscale functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 421-433. | |
6 | AUSSILLOUS P, QUÉRÉ D. Liquid marbles[J]. Nature, 2001, 411(6840): 924-927. |
7 | CHU Y, WANG Z K, PAN Q M. Constructing robust liquid marbles for miniaturized synthesis of graphene/Ag nanocomposite[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8378-8386. |
8 | ZANG D Y, CHEN Z, ZHANG Y J, et al. Effect of particle hydrophobicity on the properties of liquid water marbles[J]. Soft Matter, 2013, 9(20): 5067. |
9 | ARBATAN T, LI L Z, TIAN J F, et al. Liquid marbles as micro-bioreactors for rapid blood typing[J]. Advanced Healthcare Materials, 2012, 1(1): 80-83. |
10 | MCHALE G, NEWTON M I. Liquid marbles: principles and applications[J]. Soft Matter, 2011, 7(12): 5473. |
11 | MIAO Y E, LEE H K, CHEW W S, et al. Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue[J]. Chemical Communications, 2014, 50(44): 5923-5926. |
12 | LIU D H, CHOI S, CHEN B, et al. Cover picture: nontoxic membrane-active antimicrobial arylamide oligomers[J]. Angewandte Chemie International Edition, 2004, 43(9): 1033. |
13 | FULLARTON C, DRAPER T C, PHILLIPS N, et al. Evaporation, lifetime, and robustness studies of liquid marbles for collision-based computing[J]. Langmuir, 2018, 34(7): 2573-2580. |
14 | MAHADEVAN L, POMEAU Y. Rolling droplets[J]. Physics of Fluids, 1999, 11(9): 2449-2453. |
15 | MCELENEY P, WALKER G M, LARMOUR I A, et al. Liquid marble formation using hydrophobic powders[J]. Chemical Engineering Journal, 2009, 147(2/3): 373-382. |
16 | DANDAN M, ERBIL H Y. Evaporation rate of graphite liquid marbles: comparison with water droplets[J]. Langmuir, 2009, 25(14): 8362-8367. |
17 | MELE E, BAYER I S, NANNI G, et al. Biomimetic approach for liquid encapsulation with nanofibrillar cloaks[J]. Langmuir, 2014, 30(10): 2896-2902. |
18 | NGUYEN T H, HAPGOOD K, SHEN W. Observation of the liquid marble morphology using confocal microscopy[J]. Chemical Engineering Journal, 2010, 162(1): 396-405. |
19 | FERNANDES A M, MANTIONE D, GRACIA R, et al. From polymer latexes to multifunctional liquid marbles[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4433-4441. |
20 | BORMASHENKO E, POGREB R, WHYMAN G, et al. Surface tension of liquid marbles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 351(1/2/3): 78-82. |
21 | AVRĂMESCU R E, GHICA M V, DINU-PÎRVU C, et al. Liquid marbles: from industrial to medical applications[J]. Molecules, 2018, 23(5): 1120. |
22 | CELESTINI F, KOFMAN R. Vibration of submillimeter-size supported droplets[J]. Physical Review E, 2006, 73(4): 041602. |
23 | ASARE-ASHER S, CONNOR J N, SEDEV R. Elasticity of liquid marbles[J]. Journal of Colloid and Interface Science, 2015, 449: 341-346. |
24 | BORMASHENKO E. Liquid marbles, elastic nonstick droplets: from minireactors to self-propulsion[J]. Langmuir, 2017, 33(3): 663-669. |
25 | JIN J, OOI C H, DAO D V, et al. Liquid marble coalescence via vertical collision[J]. Soft Matter, 2018, 14(20): 4160-4168. |
26 | CHEN Z, ZANG D, ZHAO L, et al. Liquid marble coalescence and triggered microreaction driven by acoustic levitation[J]. Langmuir, 2017, 33(25): 6232-6239. |
27 | LIU Z, FU X Y, BINKS B P, et al. Coalescence of electrically charged liquid marbles[J]. Soft Matter, 2016, 13(1): 119-124. |
28 | 闫超, 李梅, 路庆华. 液体弹珠及其研究进展[J]. 化学进展, 2011, 23(4): 649-656. |
YAN Chao, LI Mei, LU Qinghua. Progress in liquid marbles[J]. Progress in Chemistry, 2011, 23(4): 649-656. | |
29 | KIDO K, IRELAND P M, SEKIDO T, et al. Formation of liquid marbles using pH-responsive particles: rolling vs electrostatic methods[J]. Langmuir, 2018, 34(17): 4970-4979. |
30 | CASTRO J O, NEVES B M, REZK A R, et al. Continuous production of Janus and composite liquid marbles with tunable coverage[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 17751-17756. |
31 | BHOSALE P S, PANCHAGNULA M V. Sweating liquid micro-marbles: dropwise condensation on hydrophobic nanoparticulate materials[J]. Langmuir, 2012, 28(42): 14860-14866. |
32 | LIU Z, ZHANG Y Y, CHEN C L, et al. Larger stabilizing particles make stronger liquid marble[J]. Small, 2019, 15(3): 1804549. |
33 | BHOSALE P S, PANCHAGNULA M V, STRETZ H A. Mechanically robust nanoparticle stabilized transparent liquid marbles[J]. Applied Physics Letters, 2008, 93(3): 034109. |
34 | QIN S W, WANG D, WANG J X, et al. Polyhedral oligomeric silsesquioxane-coated nanodiamonds for multifunctional applications[J]. Journal of Materials Science, 2018, 53(23): 15915-15926. |
35 | CHIN J M, REITHOFER M R, TAN T T, et al. Supergluing MOF liquid marbles[J]. Chemical Communications, 2013, 49(5): 493-495. |
36 | ZHAO Z J, LING C, WANG D, et al. Liquid marbles in liquid[J]. Small, 2020, 16(37): 2002802. |
37 | ZHANG L B, CHA D, WANG P. Remotely controllable liquid marbles[J]. Advanced Materials, 2012, 24(35): 4756-4760. |
38 | BORMASHENKO E, FRENKEL M, BORMASHENKO Y, et al. Superposition of translational and rotational motions under self-propulsion of liquid marbles filled with aqueous solutions of camphor[J]. Langmuir, 2017, 33(46): 13234-13241. |
39 | PAVEN M, MAYAMA H, SEKIDO T, et al. Light-driven delivery and release of materials using liquid marbles[J]. Advanced Functional Materials, 2016, 26(19): 3199-3206. |
40 | BORMASHENKO E, BORMASHENKO Y, GRYNYOV R, et al. Self-propulsion of liquid marbles: leidenfrost-like levitation driven by Marangoni flow[J]. The Journal of Physical Chemistry C, 2015, 119(18): 9910-9915. |
41 | AUSSILLOUS P, QUÉRÉ D. Properties of liquid marbles[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 973-999. |
42 | BORMASHENKO E, POGREB R, BALTER R, et al. Liquid marbles containing petroleum and their properties[J]. Petroleum Science, 2015, 12(2): 340-344. |
43 | SUN Y J, HUANG X, SOH S. Solid-to-liquid charge transfer for generating droplets with tunable charge[J]. Angewandte Chemie International Edition, 2016, 55(34): 9956-9960. |
44 | ZHAO Y, FANG J, WANG H X, et al. Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles[J]. Advanced Materials, 2010, 22(6): 707-710. |
45 | LUO X, YIN H, LI X, et al. CO2-Triggered microreactions in liquid marbles[J]. Chemical Communications, 2018, 54(66): 9119-9122. |
46 | ZHAO Z J, QIN S W, WANG D, et al. Multi-stimuli-responsive liquid marbles stabilized by superhydrophobic luminescent carbon dots for miniature reactors[J]. Chemical Engineering Journal, 2020, 391: 123478. |
47 | HAN X, LEE H K, LEE Y H, et al. Dynamic rotating liquid marble for directional and enhanced mass transportation in three-dimensional microliter droplets[J]. The Journal of Physical Chemistry Letters, 2017, 8(1): 243-249. |
48 | GAO W, LEE H K, HOBLEY J, et al. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation[J]. Angewandte Chemie International Edition, 2015, 127(13): 4065-4068. |
49 | LI M S, TIAN J F, LI L Z, et al. Charge transport between liquid marbles[J]. Chemical Engineering Science, 2013, 97: 337-343. |
50 | WANG D, ZHU L, CHEN J F, et al. Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically responsive miniature reactors for photocatalysis and photodynamic therapy[J]. Angewandte Chemie International Edition, 2016, 55(36): 10795-10799. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[4] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[5] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[6] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[7] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[10] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[11] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[12] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[13] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[14] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[15] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |