Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6102-6112.DOI: 10.16085/j.issn.1000-6613.2020-2226
• Industrial catalysis • Previous Articles Next Articles
QIAN Jingxia(), CHEN Tianwen, LIU Dabin, ZHOU Lyu()
Received:
2020-11-08
Revised:
2020-12-20
Online:
2021-11-19
Published:
2021-11-05
Contact:
ZHOU Lyu
通讯作者:
周吕
作者简介:
钱敬侠(1994—),女,博士研究生,研究方向为能源催化。E-mail:基金资助:
CLC Number:
QIAN Jingxia, CHEN Tianwen, LIU Dabin, ZHOU Lyu. Methane decomposition to produce pure hydrogen and carbon nano materials over FeM catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6102-6112.
钱敬侠, 陈天文, 刘大斌, 周吕. FeM双金属用于甲烷催化裂解制纯氢气和碳纳米材料[J]. 化工进展, 2021, 40(11): 6102-6112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2226
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|
Fe | 2.7 | 0.02 | 40.3 |
Fe15Mo1 | 11.1 | 0.07 | 40.5 |
Fe15Cu1 | 0.4 | — | — |
Fe15W1 | 16.4 | 0.09 | 29.1 |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|
Fe | 2.7 | 0.02 | 40.3 |
Fe15Mo1 | 11.1 | 0.07 | 40.5 |
Fe15Cu1 | 0.4 | — | — |
Fe15W1 | 16.4 | 0.09 | 29.1 |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|
Fe | 2.7 | 0.02 | 40.3 |
Fe15Mo1 | 11.1 | 0.07 | 40.5 |
Fe5Mo1 | 8.8 | 0.06 | 33.5 |
Fe3Mo1 | 7.8 | 0.06 | 38.7 |
Fe1Mo1 | 0.7 | 0.01 | 38.8 |
Fe1Mo1.5 | 0.07 | — | — |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
---|---|---|---|
Fe | 2.7 | 0.02 | 40.3 |
Fe15Mo1 | 11.1 | 0.07 | 40.5 |
Fe5Mo1 | 8.8 | 0.06 | 33.5 |
Fe3Mo1 | 7.8 | 0.06 | 38.7 |
Fe1Mo1 | 0.7 | 0.01 | 38.8 |
Fe1Mo1.5 | 0.07 | — | — |
项目 | Fe 2p | O 1s | Mo 3d | ||||
---|---|---|---|---|---|---|---|
Fe 2p3/2 | Fe 2p3/2卫星峰 | Fe 2p1/2 | Fe 2p1/2卫星峰 | Mo 3d5/2 | Mo 3d3/2 | ||
Fe2O3 | — | — | — | — | 3.6 | — | — |
MoO3 | — | — | — | — | 18.6 | — | — |
Fe2(MoO4)3 | — | — | — | — | 69.0 | — | — |
表面吸附氧 | 8.8 | ||||||
Fe2O3/Fe2(MoO4)3 | 48.9 | 14.6 | 28.1 | 8.4 | — | — | — |
MoO3/Fe2(MoO4)3 | — | — | — | — | — | 60.4 | 39.6 |
项目 | Fe 2p | O 1s | Mo 3d | ||||
---|---|---|---|---|---|---|---|
Fe 2p3/2 | Fe 2p3/2卫星峰 | Fe 2p1/2 | Fe 2p1/2卫星峰 | Mo 3d5/2 | Mo 3d3/2 | ||
Fe2O3 | — | — | — | — | 3.6 | — | — |
MoO3 | — | — | — | — | 18.6 | — | — |
Fe2(MoO4)3 | — | — | — | — | 69.0 | — | — |
表面吸附氧 | 8.8 | ||||||
Fe2O3/Fe2(MoO4)3 | 48.9 | 14.6 | 28.1 | 8.4 | — | — | — |
MoO3/Fe2(MoO4)3 | — | — | — | — | — | 60.4 | 39.6 |
1 | IBRAHIM A A, AL‐FATESH A S, KHAN W U, et al. Influence of support type and metal loading in methane decomposition over iron catalyst for hydrogen production[J]. Journal of the Chinese Chemical Society, 2015, 62(7): 592-599. |
2 | 王迪, 胡燕, 高卫民, 等. 甲烷催化裂解制氢和碳纳米材料研究进展[J]. 化工进展, 2018, 37(S1): 80-93. |
WANG Di, HU Yan, GAO Weimin, et al. Progress of methane catalytic decomposition for hydrogen and carbon nanomaterials production[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 80-93. | |
3 | 彭乔. 甲烷裂解制氢催化剂的制备及其性能与模拟研究[D]. 武汉: 华中师范大学, 2016. |
PENG Qiao. The preparation of methane cracking catalyst for hydrogen production and its performance and simulation studies[D]. Wuhan: Central China Normal University, 2016. | |
4 | AL-FATESH A S, IBRAHIM A A, ALSHAREKH A M, et al. Methane decomposition over strontium promoted iron catalyst: effect of different ratio of Al/Si support on hydrogen yield[J]. Chemical Engineering Communications, 2020, 207(8): 1148-1156. |
5 | PUDUKUDY M, YAAKOB Z, JIA Q M, et al. Catalytic decomposition of methane over rare earth metal (Ce and La) oxides supported iron catalysts[J]. Applied Surface Science, 2019, 467/468: 236-248. |
6 | GENG S, HAN Z, HU Y, et al. Methane decomposition kinetics over Fe2O3 catalyst in micro fluidized bed reaction analyzer[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8413-8423. |
7 | KARAISMAILOGLU M, FIGEN H E, BAYKARA S Z. Hydrogen production by catalytic methane decomposition over yttria doped nickel based catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9922-9929. |
8 | UPHAM D C, AGARWAL V, KHECHFE A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science, 2017, 358(6365): 917-921. |
9 | ASHIK U P M, WAN DAUD W M A, ABBAS H F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 221-256. |
10 | QIAN J X, CHEN T W, ENAKONDA L R, et al. Methane decomposition to pure hydrogen and carbon nano materials: state-of-the-art and future perspectives[J]. International Journal of Hydrogen Energy, 2020, 45(32): 15721-15743. |
11 | ZHOU L, ENAKONDA L R, HARB M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B: Environmental, 2017, 208: 44-59. |
12 | ALLAEDINI G, TASIRIN S M, AMINAYI P, et al. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni-Co-Fe catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(2): 385-396. |
13 | CALAFAT Á, SÁNCHEZ N. Production of carbon nanotubes through combination of catalyst reduction and methane decomposition over Fe-Ni/ZrO2 catalysts prepared by the citrate method[J]. Applied Catalysis A: General, 2016, 528: 14-23. |
14 | OLIVEIRA P F, RIBEIRO L P, ROSMANINHO M G, et al. Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon[J]. Hyperfine Interactions, 2011, 203(1/2/3): 67-74. |
15 | FAKEEHA A H, IBRAHIM A A, NAEEM M A, et al. Methane decomposition over Fe supported catalysts for hydrogen and nano carbon yield[J]. Catalysis for Sustainable Energy, 2015, 2(1): 71-82. |
16 | TORRES D, PINILLA J L, LÁZARO M J, et al. Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: thermogravimetric analysis and scaling-up of Fe-Mo catalysts[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3698-3709. |
17 | ZHOU L, ENAKONDA L R, LI S, et al. Iron ore catalysts for methane decomposition to make COx free hydrogen and carbon nano material[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87: 54-63. |
18 | FAKEEHA A H, IBRAHIM A A, KHAN W U, et al. Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst[J]. Arabian Journal of Chemistry, 2018, 11(3): 405-414. |
19 | IBRAHIM A A, FAKEEHA A H, AL-FATESH A S, et al. Methane decomposition over iron catalyst for hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7593-7600. |
20 | SIMON A, SEYRING M, KAMNITZ S, et al. Carbon nanotubes and carbon nanofibers fabricated on tubular porous Al2O3 substrates[J]. Carbon, 2015, 90: 25-33. |
21 | TORRES D, PINILLA J, SUELVES I. Co-, Cu- and Fe-doped Ni/Al2O3 catalysts for the catalytic decomposition of methane into hydrogen and carbon nanofibers[J]. Catalysts, 2018, 8(8): 300. |
22 | ZHANG C, ZHANG W, DREWETT N E, et al. Integrating catalysis of methane decomposition and electrocatalytic hydrogen evolution with Ni/CeO2 for improved hydrogen production efficiency[J]. ChemSusChem, 2019, 12(5): 1000-1010. |
23 | CALGARO C O, PEREZ-LOPEZ O W. Graphene and carbon nanotubes by CH4 decomposition over CoAl catalysts[J]. Materials Chemistry and Physics, 2019, 226: 6-19. |
24 | PUDUKUDY M, YAAKOB Z, AKMAL Z S. Direct decomposition of methane over Pd promoted Ni/SBA-15 catalysts[J]. Applied Surface Science, 2015, 353: 127-136. |
25 | WANG J, JIN L, LI Y, et al. Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11021-11027. |
26 | NISHII H, MIYAMOTO D, UMEDA Y, et al. Catalytic activity of several carbons with different structures for methane decomposition and by-produced carbons[J]. Applied Surface Science, 2019, 473: 291-297. |
27 | QIAN J X, CHEN T W, ENAKONDA L R, et al. Methane decomposition to produce COx-free hydrogen and nano-carbon over metal catalysts: a review[J]. International Journal of Hydrogen Energy, 2020, 45(15): 7981-8001. |
28 | TANG L, YAMAGUCHI D, BURKE N, et al. Methane decomposition over ceria modified iron catalysts[J]. Catalysis Communications, 2010, 11(15): 1215-1219. |
29 | PUDUKUDY M, KADIER A, YAAKOB Z, et al. Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(41): 18509-18521. |
30 | AWADALLAH A E, ABOUL-ENEIN A A, KANDIL U F, et al. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts[J]. Materials Chemistry and Physics, 2017, 191: 75-85. |
31 | PUDUKUDY M, YAAKOB Z, DAHANI N, et al. Production of COx free hydrogen and nanocarbon via methane decomposition over unsupported porous nickel and iron catalysts[J]. Journal of Cluster Science, 2017, 28(3): 1579-1594. |
32 | ASHIK U P M, DAUD W M A W. Stabilization of Ni, Fe, and Co nanoparticles through modified Stöber method to obtain excellent catalytic performance: preparation, characterization, and catalytic activity for methane decomposition[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61: 247-260. |
33 | WANG H Y, LUA A C. Methane decomposition using Ni-Cu alloy nano-particle catalysts and catalyst deactivation studies[J]. Chemical Engineering Journal, 2015, 262: 1077-1089. |
34 | PUDUKUDY M, YAAKOB Z, TAKRIFF M S. Methane decomposition over unsupported mesoporous nickel ferrites: effect of reaction temperature on the catalytic activity and properties of the produced nanocarbon[J]. RSC Advances, 2016, 6(72): 68081-68091. |
35 | QIAN J X, ENAKONDA L R, WANG W J, et al. Optimization of a fluidized bed reactor for methane decomposition over Fe/Al2O3 catalysts: activity and regeneration studies[J]. International Journal of Hydrogen Energy, 2019, 44(60): 31700-31711. |
36 | ZHOU L, ENAKONDA L R, SAIH Y, et al. Catalytic methane decomposition over Fe-Al2O3[J]. ChemSusChem, 2016, 9(11): 1243-1248. |
37 | REDDY ENAKONDA L, ZHOU L, SAIH Y, et al. Methane-induced activation mechanism of fused ferric oxide-alumina catalysts during methane decomposition[J]. ChemSusChem, 2016, 9(15): 1911-1915. |
38 | ZHANG X, NIU Y, LI Y, et al. Synthesis, optical and magnetic properties of α-Fe2O3 nanoparticles with various shapes[J]. Materials Letters, 2013, 99: 111-114. |
39 | WIRTH C T, BAYER B C, GAMALSKI A D, et al. The phase of iron catalyst nanoparticles during carbon nanotube growth[J]. Chemistry of Materials, 2012, 24(24): 4633-4640. |
40 | EBERT D Y, DOROFEEVA N V, SAVEL’EVA A S, et al. Silica-supported Fe-Mo-O catalysts for selective oxidation of propylene glycol[J]. Catalysis Today, 2019, 333: 133-139. |
41 | YUE Y, LIU B, LY N, et al. Direct synthesis of hierarchical FeCu‐ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3[J]. ChemCatChem, 2019, 11(19): 4744-4754. |
42 | AL-FATESH A S, DE KASIM S O, IBRAHIM A A, et al. Catalytic methane decomposition over ZrO2 supported iron catalysts: effect of WO3 and La2O3 addition on catalytic activity and stability[J]. Renewable Energy, 2020, 155: 969-978. |
43 | DECK C P, VECCHIO K. Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams[J]. Carbon, 2006, 44(2): 267-275. |
44 | FAKEEHA A H, AL-FATESH A S, CHOWDHURY B, et al. Bi-metallic catalysts of mesoporous Al2O3 supported on Fe, Ni and Mn for methane decomposition: effect of activation temperature[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1904-1911. |
45 | PINILLA J L, UTRILLA R, KARN R K, et al. High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7832-7843. |
46 | WROBEL R, HELMINIAK A, ARABCZYK W, et al. Studies on the kinetics of carbon deposit formation on nanocrystalline iron stabilized with structural promoters[J]. The Journal of Physical Chemistry C, 2014, 118(28): 15434-15439. |
47 | PUDUKUDY M, YAAKOB Z, KADIER A, et al. One-pot sol-gel synthesis of Ni/TiO2 catalysts for methane decomposition into COx free hydrogen and multiwalled carbon nanotubes[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16495-16513. |
48 | CHAI S P, LEE K Y, ICHIKAWA S, et al. Synthesis of carbon nanotubes by methane decomposition over Co-Mo/Al2O3: process study and optimization using response surface methodology[J]. Applied Catalysis A: General, 2011, 396(1/2): 52-58. |
49 | AWADALLAH A E, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Effect of progressive Co loading on commercial Co-Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes[J]. Energy Conversion and Management, 2014, 77: 143-151. |
50 | AWADALLAH A E, ABOUL-ENEIN A A, AZAB M A, et al. Influence of Mo or Cu doping in Fe/MgO catalyst for synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of methane[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(4): 256-264. |
51 | DENG J L, LIU J X, SONG W Y, et al. Selective catalytic reduction of NO with NH3 over Mo-Fe/beta catalysts: the effect of Mo loading amounts[J]. RSC Advances, 2017, 7(12): 7130-7139. |
52 | NOVOTNÝ P, YUSUF S, LI F, et al. Oxidative dehydrogenation of ethane using MoO3/Fe2O3 catalysts in a cyclic redox mode[J]. Catalysis Today, 2018, 317: 50-55. |
53 | BAEK M, GUAN-WOO K, PARK T, et al. NiMoFe and NiMoFeP as complementary electrocatalysts for efficient overall water splitting and their application in PV-electrolysis with STH 12.3[J]. Small, 2019, 15(49): e1905501. |
54 | BOWKER M, BROOKES C, CARLEY A F, et al. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxide[J]. Physical Chemistry Chemical Physics, 2013, 15(29): 12056. |
55 | LI Y K, ZHANG G, LU W T, et al. Amorphous Ni-Fe-Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: a highly efficient and durable bifunctional electrode for overall water splitting[J]. Advanced Science, 2020, 7(7): 1902034. |
56 | LU Y, ZHU Z P, SU D S, et al. Formation of bamboo-shape carbon nanotubes by controlled rapid decomposition of picric acid[J]. Carbon, 2004, 42(15): 3199-3207. |
57 | KUDUS M H A, AKIL H M, MOHAMAD H, et al. Effect of catalyst calcination temperature on the synthesis of MWCNT-alumina hybrid compound using methane decomposition method[J]. Journal of Alloys and Compounds, 2011, 509(6): 2784-2788. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |