Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4117-4126.DOI: 10.16085/j.issn.1000-6613.2020-1938
• Invited review • Previous Articles Next Articles
LI Zhouyan1(), DAI Ruobin1, LI Yang1, WANG Xueye1, WANG Zhiwei1,2()
Received:
2020-09-22
Online:
2021-08-12
Published:
2021-08-05
Contact:
WANG Zhiwei
李胄彦1(), 戴若彬1, 李洋1, 王雪野1, 王志伟1,2()
通讯作者:
王志伟
作者简介:
李胄彦(1996—),男,博士研究生,研究方向为膜法污水处理与资源化技术。E-mail:基金资助:
CLC Number:
LI Zhouyan, DAI Ruobin, LI Yang, WANG Xueye, WANG Zhiwei. Research progress of functional membranes based on two-dimensional nanomaterials for water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4117-4126.
李胄彦, 戴若彬, 李洋, 王雪野, 王志伟. 基于二维纳米材料的水处理功能膜研究进展[J]. 化工进展, 2021, 40(8): 4117-4126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1938
二维 纳米材料 | 其他分离层组分 | 制备方法 | 分类 | 应用场景 | 最优条件 | 抗污染效果 | 参考 文献 |
---|---|---|---|---|---|---|---|
GO | 激光诱导石墨烯(LIG),戊二醛 | VAF自组装 | 导电膜 | 微(超)滤 | 3V,作为阳极 | 在混菌的错流过滤实验中,导电膜通量较普通超滤膜提升11% | [ |
Gr | PANI | PAF自组装 | 导电膜 | 正渗透 | 2V,作为阳极 | 在海藻酸钠污染实验中,污染速率降低40%~45%,通量恢复率提升20%~30% | [ |
rGO | PDVF,PDAAQ | 相转化法 | 导电膜 | 膜生物 反应器 | 1.0V·cm-1,作为阴极 | 牛血清蛋白(BSA)的污染速率降低63.5% | [ |
GO | 导电高分子聚吡咯(PPy) | 气相聚合法 | 导电膜 | 膜生物 反应器 | 1.0V·cm-1,作为阴极 | 在酵母菌污染实验中,较对照组通量提升20% | [ |
GO | 导电高分子聚吡咯(PPy) | 气相聚合法 | 导电膜 | 膜生物 反应器 | 2V·cm-1,作为阴极,并投加群体感应淬灭细菌 | 在MBR中污染速率仅为其他对照组的34%~55% | [ |
Gr | 基膜为镍基导电膜 | 化学气相沉积 | 导电膜 | 厌氧膜生物 反应器 | 0.7V或0.9V,作为阴极,阴阳极间距约1.5cm的矩形反应器 | 运行50余天后,跨膜压力仅为0.10bar(0.7V)和0.05bar(0.9V),远低于管式反应器(0.7V)的0.46bar(1bar=105Pa) | [ |
二维 纳米材料 | 其他分离层组分 | 制备方法 | 分类 | 应用场景 | 最优条件 | 抗污染效果 | 参考 文献 |
---|---|---|---|---|---|---|---|
GO | 激光诱导石墨烯(LIG),戊二醛 | VAF自组装 | 导电膜 | 微(超)滤 | 3V,作为阳极 | 在混菌的错流过滤实验中,导电膜通量较普通超滤膜提升11% | [ |
Gr | PANI | PAF自组装 | 导电膜 | 正渗透 | 2V,作为阳极 | 在海藻酸钠污染实验中,污染速率降低40%~45%,通量恢复率提升20%~30% | [ |
rGO | PDVF,PDAAQ | 相转化法 | 导电膜 | 膜生物 反应器 | 1.0V·cm-1,作为阴极 | 牛血清蛋白(BSA)的污染速率降低63.5% | [ |
GO | 导电高分子聚吡咯(PPy) | 气相聚合法 | 导电膜 | 膜生物 反应器 | 1.0V·cm-1,作为阴极 | 在酵母菌污染实验中,较对照组通量提升20% | [ |
GO | 导电高分子聚吡咯(PPy) | 气相聚合法 | 导电膜 | 膜生物 反应器 | 2V·cm-1,作为阴极,并投加群体感应淬灭细菌 | 在MBR中污染速率仅为其他对照组的34%~55% | [ |
Gr | 基膜为镍基导电膜 | 化学气相沉积 | 导电膜 | 厌氧膜生物 反应器 | 0.7V或0.9V,作为阴极,阴阳极间距约1.5cm的矩形反应器 | 运行50余天后,跨膜压力仅为0.10bar(0.7V)和0.05bar(0.9V),远低于管式反应器(0.7V)的0.46bar(1bar=105Pa) | [ |
二维 纳米材料 | 其他分离层组分 | 制备方法 | 分类 | 应用场景 | 实验参数 | 通量恢复效果 | 参考文献 |
---|---|---|---|---|---|---|---|
rGO | PANI | PAF自组装 | 导电膜 | 微(超)滤 | 3~9V作为阳极进行清洗,阴阳极间距0.5cm | 清洗实验中通量恢复率最高达到97% | [ |
rGO | 有机主体为PES、PANI(HCSA) 或PANI(DBSA) | 相转化法 | 导电膜 | 微(超)滤 | 电压5V,清洗时间10min | 在腐殖酸(HA)和BSA污染实验中,通量恢复率较超纯水清洗提升6%~8%,较普通PES膜提升48%~68% | [ |
rGO | 二维TiO2 | 溶剂热诱导组装 | 光催化膜 | 染料分离 | 可见光照射一定时间 | 通量恢复率约为95% | [ |
GO | 一维TiO2纳米棒 | VAF自组装 | 光催化膜 | 染料分离 | 可见光照射24h,功率500W,照明距离35cm | 3轮实验后,通量恢复率均大于83% | [ |
GO,g-C3N4 | 零维TiO2 | VAF自组装 | 光催化膜 | 油水分离 | 去离子水清洗20min,模拟光照1h | 通量为普通GO膜的45倍,10轮油水分离试验后自清洁的通量恢复率仍高于95% | [ |
GO,g-C3N4 | 一维坡缕石(PG)、光催化剂Bi2O2CO3 | VAF自组装 | 光催化膜 | 油水分离 | 模拟光照射1h | 通量为普通GO膜的46倍,自清洁的通量恢复率高于95%(最高接近100%) | [ |
g-C3N4 | 芬顿催化剂 Fe-POMs | 氢键作用辅助的VAF自组装 | 光催化膜 | 染料分离 | 100mW·cm-2模拟太阳光照,连续流实验中添加30mmol·L-1 H2O2 | 5轮试验后,通量恢复率均接近100%;连续流实验中通量在12h内保持稳定 | [ |
二维 纳米材料 | 其他分离层组分 | 制备方法 | 分类 | 应用场景 | 实验参数 | 通量恢复效果 | 参考文献 |
---|---|---|---|---|---|---|---|
rGO | PANI | PAF自组装 | 导电膜 | 微(超)滤 | 3~9V作为阳极进行清洗,阴阳极间距0.5cm | 清洗实验中通量恢复率最高达到97% | [ |
rGO | 有机主体为PES、PANI(HCSA) 或PANI(DBSA) | 相转化法 | 导电膜 | 微(超)滤 | 电压5V,清洗时间10min | 在腐殖酸(HA)和BSA污染实验中,通量恢复率较超纯水清洗提升6%~8%,较普通PES膜提升48%~68% | [ |
rGO | 二维TiO2 | 溶剂热诱导组装 | 光催化膜 | 染料分离 | 可见光照射一定时间 | 通量恢复率约为95% | [ |
GO | 一维TiO2纳米棒 | VAF自组装 | 光催化膜 | 染料分离 | 可见光照射24h,功率500W,照明距离35cm | 3轮实验后,通量恢复率均大于83% | [ |
GO,g-C3N4 | 零维TiO2 | VAF自组装 | 光催化膜 | 油水分离 | 去离子水清洗20min,模拟光照1h | 通量为普通GO膜的45倍,10轮油水分离试验后自清洁的通量恢复率仍高于95% | [ |
GO,g-C3N4 | 一维坡缕石(PG)、光催化剂Bi2O2CO3 | VAF自组装 | 光催化膜 | 油水分离 | 模拟光照射1h | 通量为普通GO膜的46倍,自清洁的通量恢复率高于95%(最高接近100%) | [ |
g-C3N4 | 芬顿催化剂 Fe-POMs | 氢键作用辅助的VAF自组装 | 光催化膜 | 染料分离 | 100mW·cm-2模拟太阳光照,连续流实验中添加30mmol·L-1 H2O2 | 5轮试验后,通量恢复率均接近100%;连续流实验中通量在12h内保持稳定 | [ |
二维 纳米材料 | 其他分离层组分 | 制备方法 | 分类 | 应用场景 | 关键参数 | 去除效果 | 参考文献 |
---|---|---|---|---|---|---|---|
MoS2 | Fe(OH)3作为模板,成膜后刻蚀掉 | VAF自组装/ 模板刻蚀 | 其他功能膜 | 污染物降解 | 过一硫酸盐浓度为50ppm(1ppm=1mg/kg),pH为4,过滤性能为154L·m-2·h-1·bar-1 | 接触时间为60.4ms,BPA(2ppm)的去除率大于90% | [ |
MoS2 | 无 | VAF自组装 | 其他功能膜 | 重金属去除 | pH为6,反应时间为1天,MoS2膜未经真空干燥 | 还原去除容量约为4000mg Ag/g MoS2,远高于干燥后的MoS2膜 | [ |
Gr | TiO2 | 溶胶凝胶法 | 导电膜/ 光催化膜 | 微(超)滤 | pH为5.4,模拟太阳光照,4V作为阳极 | 30min光电协同对100mL罗丹明B(10mg·L-1)的去除效率达97.8%,高于300min的光催化去除效率(87.6%) | [ |
GO | 一维TiO2纳米线,聚多巴胺 | VAF自组装 | 光催化膜 | 油水/染料分离 | 可见光照射条件下,过滤性能为273L·m-2·h-1·bar-1 | 对油水混合液中MB(10ppm)的去除率大于98% | [ |
GO | 零维TiO2、Co3O4 | VAF自组装 | 光催化膜 | 油水分离 | 光源功率为250W | 100mL刚果红/油水混合液,刚果红(20ppm)降解效率为82% | [ |
GO | 零维纳米Ag、一维钛纳米管 | VAF自组装 | 光催化膜 | 染料分离 | 可见光照射条件下,通量为34.7L·m-2·h-1 | 对MB(10mg·L-1)的去除率大于65%,且通量约为无光照条件下的两倍 | [ |
rGO | 一维g-C3N4 纳米管 | VAF自组装 | 光催化膜 | 染料分离 | 300W可见光照射条件下,过滤性能为4.77L·m-2·h-1·bar-1 | 对罗丹明B(5mg·L-1)的去除率大于98% | [ |
GO, g-C3N4 | 一维CNTs | VAF自组装 | 光催化膜 | 污染物降解 | 可见光照射条件下,过滤性能为14.35L·m-2·h-1·bar-1 | 罗丹明B和盐酸四环素去除率分别为98.31%、84.81% | [ |
GO | 光Fenton催化剂:一维MOF (MIL-88A) | VAF自组装 | 光催化膜 | 染料分离 | 模拟太阳光104mW·cm-2,10mmol·L-1 H2O2 | 对50mL MB和BPA(10mg·L-1)去除率分别为98.8%和97.3% | [ |
二维 纳米材料 | 其他分离层组分 | 制备方法 | 分类 | 应用场景 | 关键参数 | 去除效果 | 参考文献 |
---|---|---|---|---|---|---|---|
MoS2 | Fe(OH)3作为模板,成膜后刻蚀掉 | VAF自组装/ 模板刻蚀 | 其他功能膜 | 污染物降解 | 过一硫酸盐浓度为50ppm(1ppm=1mg/kg),pH为4,过滤性能为154L·m-2·h-1·bar-1 | 接触时间为60.4ms,BPA(2ppm)的去除率大于90% | [ |
MoS2 | 无 | VAF自组装 | 其他功能膜 | 重金属去除 | pH为6,反应时间为1天,MoS2膜未经真空干燥 | 还原去除容量约为4000mg Ag/g MoS2,远高于干燥后的MoS2膜 | [ |
Gr | TiO2 | 溶胶凝胶法 | 导电膜/ 光催化膜 | 微(超)滤 | pH为5.4,模拟太阳光照,4V作为阳极 | 30min光电协同对100mL罗丹明B(10mg·L-1)的去除效率达97.8%,高于300min的光催化去除效率(87.6%) | [ |
GO | 一维TiO2纳米线,聚多巴胺 | VAF自组装 | 光催化膜 | 油水/染料分离 | 可见光照射条件下,过滤性能为273L·m-2·h-1·bar-1 | 对油水混合液中MB(10ppm)的去除率大于98% | [ |
GO | 零维TiO2、Co3O4 | VAF自组装 | 光催化膜 | 油水分离 | 光源功率为250W | 100mL刚果红/油水混合液,刚果红(20ppm)降解效率为82% | [ |
GO | 零维纳米Ag、一维钛纳米管 | VAF自组装 | 光催化膜 | 染料分离 | 可见光照射条件下,通量为34.7L·m-2·h-1 | 对MB(10mg·L-1)的去除率大于65%,且通量约为无光照条件下的两倍 | [ |
rGO | 一维g-C3N4 纳米管 | VAF自组装 | 光催化膜 | 染料分离 | 300W可见光照射条件下,过滤性能为4.77L·m-2·h-1·bar-1 | 对罗丹明B(5mg·L-1)的去除率大于98% | [ |
GO, g-C3N4 | 一维CNTs | VAF自组装 | 光催化膜 | 污染物降解 | 可见光照射条件下,过滤性能为14.35L·m-2·h-1·bar-1 | 罗丹明B和盐酸四环素去除率分别为98.31%、84.81% | [ |
GO | 光Fenton催化剂:一维MOF (MIL-88A) | VAF自组装 | 光催化膜 | 染料分离 | 模拟太阳光104mW·cm-2,10mmol·L-1 H2O2 | 对50mL MB和BPA(10mg·L-1)去除率分别为98.8%和97.3% | [ |
1 | WANG Z W, MA J X, TANG C Y, et al. Membrane cleaning in membrane bioreactors: a review[J]. Journal of Membrane Science, 2014, 468: 276-307. |
2 | LEE K P, ARNOT T C, DE MATTIA D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1/2): 1-22. |
3 | ZHANG R, LIU Y, HE M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924. |
4 | SHE Q H, WANG R, FANE A G, et al. Membrane fouling in osmotically driven membrane processes: a review[J]. Journal of Membrane Science, 2016, 499: 201-233. |
5 | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
6 | WANG Z Y, MI B X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244. |
7 | JUN B M, KIM S, HEO J, et al. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications[J]. Nano Research, 2019, 12(3): 471-487. |
8 | WANG S F, YANG L X, HE G W, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089. |
9 | ZHANG Y, GONG S, ZHANG Q, et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45(9): 2378-2395. |
10 | GAO J, FENG Y, GUO W, et al. Nanofluidics in two-dimensional layered materials: inspirations from nature[J]. Chemical Society Reviews, 2017, 46(17): 5400-5424. |
11 | NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598: 117761. |
12 | MAHMOUD K A, MANSOOR B, MANSOUR A, et al. Functional graphene nanosheets: the next generation membranes for water desalination[J]. Desalination, 2015, 356: 208-225. |
13 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018. |
14 | DIMIEV A M, TOUR J M. Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8(3): 3060-3068. |
15 | NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
16 | HEGAB H M, ZOU L D. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification[J]. Journal of Membrane Science, 2015, 484: 95-106. |
17 | JOSHI R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide: the new membrane material[J]. Applied Materials Today, 2015, 1(1): 1-12. |
18 | LI Y, YANG S S, ZHANG K S, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination, 2019, 454: 48-58. |
19 | LIU L F, ZHAO F, LIU J D, et al. Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR[J]. Journal of Membrane Science, 2013, 437: 99-107. |
20 | DONG L X, HUANG X C, WANG Z, et al. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles[J]. Separation and Purification Technology, 2016, 166: 230-239. |
21 | SUBTIL E L, GONÇALVES J, LEMOS H G, et al. Preparation and characterization of a new composite conductive polyethersulfone membrane using polyaniline (PANI) and reduced graphene oxide (rGO)[J]. Chemical Engineering Journal, 2020, 390: 124612. |
22 | 樊江, 汪唯, 蔡佳浩, 等. 二维膜的精密构筑和结构调控策略综述[J]. 化工进展, 2020, 39(12): 4823-4836. |
FAN Jiang, WANG Wei, CAI Jiahao, et al. A review of structural design and tuning methods of two-dimensional membranes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4823-4836. | |
23 | JIANG B, ZENG Q Z, HOU Y, et al. Quorum quenching bacteria bioaugmented GO/PPy modified membrane in EMBR for membrane antifouling[J]. Science of the Total Environment, 2020, 718: 137412. |
24 | REN M, LIU H Y, QU J, et al. The different paths and potential risks of photo(-electro)-catalytic degradation for rhodamine B in water by graphene/TiO2 membrane[J]. Environmental Science and Pollution Research, 2018, 25(14): 13988-13999. |
25 | WANG Y Q, ZHANG H C, KANG Y, et al. Voltage-gated ion transport in two-dimensional sub-1-nanometer nanofluidic channels[J]. ACS Nano, 2019, 13(10): 11793-11799. |
26 | REN C, ALHABEB M, BYLES B W, et al. Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes[J]. ACS Applied Nano Materials, 2018, 1(7): 3644-3652. |
27 | LAO J C, LV R, GAO J, et al. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport[J]. ACS Nano, 2018, 12(12): 12464-12471. |
28 | WANG Z Y, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: performance and mechanisms[J]. Environmental Science & Technology, 2018, 52(17): 9741-9748. |
29 | KONG M, LI M J, SHANG R X, et al. Nacre-templated synthesis of highly dispersible carbon nanomeshes for layered membranes with high-flux filtration and sensing properties[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2850-2858. |
30 | THAKUR A K, SINGH S P, THAMARAISELVAN C, et al. Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes[J]. Journal of Membrane Science, 2019, 591: 117322. |
31 | YU Z X, ZENG H J, MIN X, et al. High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment[J]. Journal of Applied Polymer Science, 2020, 137(12): 48488. |
32 | KARKOOTI A, RASTGAR M, NAZEMIFARD N, et al. Graphene-based electro-conductive anti-fouling membranes for the treatment of oil sands produced water[J]. Science of the Total Environment, 2020, 704: 135365. |
33 | SHAKERI A, SALEHI H, RASTGAR M. Antifouling electrically conductive membrane for forward osmosis prepared by polyaniline/graphene nanocomposite[J]. Journal of Water Process Engineering, 2019, 32: 100932. |
34 | HU F, LI C N, YANG R Z, et al. Two-dimensional nanoconfined channels for a heavy metal sensor[J]. ACS Applied Electronic Materials, 2020, 2(1): 41-47. |
35 | DUAN W Y, RONEN A, WALKER S, et al. Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22574-22584. |
36 | LIU Y N, SU Y L, GUAN J Y, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
37 | BAO Z, CHEN D Y, LI N J, et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation[J]. Journal of Membrane Science, 2020, 598: 117804. |
38 | LIU G G, HAN K, ZHOU Y H, et al. Facile synthesis of highly dispersed Ag doped graphene oxide/titanate nanotubes as a visible light photocatalytic membrane for water treatment[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6256-6263. |
39 | SHI Y H, WAN D J, HUANG J H, et al. Stable LBL self-assembly coating porous membrane with 3D heterostructure for enhanced water treatment under visible light irradiation[J]. Chemosphere, 2020, 252: 126581. |
40 | CAI Y H, CHEN D Y, LI N J, et al. A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux[J]. Advanced Materials, 2020, 32(25): 2001265. |
41 | WEI Y B, ZHU Y X, JIANG Y J. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification[J]. Chemical Engineering Journal, 2019, 356: 915-925. |
42 | XIE A, CUI J Y, YANG J, et al. Graphene oxide/Fe(Ⅲ)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes[J]. Applied Catalysis B: Environmental, 2020, 264: 118548. |
43 | LIU Y C, YU Z X, PENG Y X, et al. A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane[J]. Chemical Physics Letters, 2020, 749: 137424. |
44 | WEN Q, JIA P, CAO L, et al. Electric-field-induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination[J]. Advanced Materials, 2020, 32(16): e1903954. |
45 | CHEN Y, ZHANG G, LIU H J, et al. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes[J]. Angewandte Chemie, 2019, 58(24): 8134-8138. |
46 | LAN H C, WANG F, LAN M, et al. Hydrogen-bond-mediated self-assembly of carbon-nitride-based photo-Fenton-like membranes for wastewater treatment[J]. Environmental Science & Technology, 2019, 53(12): 6981-6988. |
47 | YU J, ZHANG Y, CHEN J H, et al. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane[J]. Journal of Membrane Science, 2020, 600: 117870. |
48 | WERNER C M, KATURI K P, HARI A R, et al. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors - effect of configuration and applied voltage on performance and membrane fouling[J]. Environmental Science & Technology, 2016, 50(8): 4439-4447. |
49 | ZHANG J, JI Q H, LAN H C, et al. Synchronous reduction-oxidation process for efficient removal of trichloroacetic acid: H* initiates dechlorination and ·OH is responsible for removal efficiency[J]. Environmental Science & Technology, 2019, 53(24): 14586-14594. |
50 | MAO R, LI N, LAN H C, et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H[J]. Environmental Science & Technology, 2016, 50(7): 3829-3837. |
51 | ZHENG J J, WANG Z W, MA J X, et al. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters[J]. Environmental Science & Technology, 2018, 52(7): 4117-4126. |
52 | RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302. |
53 | FANG Y Z, HU R, LIU B Y, et al. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(10): 5363-5372. |
54 | SHI Y H, HUANG J H, ZENG G M, et al. Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light?[J]. Journal of Membrane Science, 2019, 584: 364-392. |
55 | 阿伦·J·巴德, 拉里·R·福克纳. 电化学方法原理和应用[M]. 邵元华等, 译. 2版. 北京: 化学工业出版社, 2005. |
BARD A J, FAULKNER L R. Electrochemical methods fundamentals and applications[M]. SHAO Y H et al,trans. 2nd ed. Beijing: Chemical Industry Press, 2005. | |
56 | ALAM I, GUINEY L M, HERSAM M C, et al. Application of external voltage for fouling mitigation from graphene oxide, reduced graphene oxide and molybdenum disulfide functionalized surfaces[J]. Environmental Science: Nano, 2019, 6(3): 925-936. |
57 | YANG Y, QIAO S, JIN R F, et al. A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling[J]. Water Research, 2019, 151: 54-63. |
58 | HU C Z, LIU Z T, LU X L, et al. Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane[J]. Journal of Materials Chemistry A, 2018, 6(11): 4737-4745. |
59 | SUN J, HU C, WU B, et al. Improving ion rejection of graphene oxide conductive membranes by applying electric field[J]. Journal of Membrane Science, 2020, 604: 118077. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[11] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[12] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[13] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[14] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[15] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |