Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4127-4134.DOI: 10.16085/j.issn.1000-6613.2020-1784
• Chemical processes and equipment • Previous Articles Next Articles
WANG Junliang(), YANG Lili, LIN Chunmian, PAN Zhiyan()
Received:
2020-09-04
Online:
2021-08-12
Published:
2021-08-05
Contact:
PAN Zhiyan
通讯作者:
潘志彦
作者简介:
王军良(1978—),男,博士,教授,研究方向为超/亚临界流体技术。E-mail:基金资助:
CLC Number:
WANG Junliang, YANG Lili, LIN Chunmian, PAN Zhiyan. Research progress of supercritical carbon dioxide in chemical reactions[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4127-4134.
王军良, 杨丽丽, 林春绵, 潘志彦. 超临界二氧化碳化学反应研究进展[J]. 化工进展, 2021, 40(8): 4127-4134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1784
1 | 金旸钧, 陈乃安, 盛溢, 等. 地质封存条件下CO2在模拟盐水层溶液中的溶解度研究[J]. 油气藏评价与开发, 2019, 9(3): 77-81, 88. |
JIN Yangjun, CHEN Naian, SHENG Yi, et al. Study on the solubility of CO2 in simulated saline solution under geological storage condition[J]. Reservoir Evaluation and Development, 2019, 9(3): 77-81, 88. | |
2 | 王军良, 李桂璇, 周义明, 等. 二氧化碳在油气田地质封存中溶解物性的研究进展[J]. 油田化学, 2018, 35(3): 550-561. |
WANG Junliang, LI Guixuan, ZHOU Yiming, et al. Research progress of dissolved physical properties of CO2 during geological storage in oil and gas fields[J]. Oilfield Chemistry, 2018, 35(3): 550-561. | |
3 | BEI Ke, WANG Junliang, ZHOU Shuyan, et al. Determining the volume expansion of the CO2+octane mixture using a fused silica capillary cell with in-situ Raman spectroscopy[J]. Journal of CO2 Utilization, 2018, 24: 149-156. |
4 | WANG Junliang, ZHOU Shuyan, BEI Ke, et al. A new approach for the measurement of the volume expansion of a CO2 + n-dodecane mixture in a fused silica capillary cell by Raman spectroscopy[J]. Fuel, 2017, 203: 113-119. |
5 | DONG Kaiwu, RAZZAQ Rauf, HU Yuya, et al. Homogeneous reduction of carbon dioxide with hydrogen[J]. Topics in Current Chemistry, 2017, 375(2): 23-49. |
6 | NUMPILAI Thanapa, WITOON Thongthai, CHANLEK Narong, et al. Structure-activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins[J]. Applied Catalysis A: General, 2017, 547: 219-229. |
7 | UTSIS N, VIDRUK-NEHEMYA R, LANDAU M V, et al. Novel bifunctional catalysts based on crystalline multi-oxide matrices containing iron ions for CO2 hydrogenation to liquid fuels and chemicals[J]. Faraday Discussions, 2016, 188: 545-563. |
8 | JESSOP Philip, IKARIYA Takao, NOYORI Ryoji. Homogeneous catalytic hydrogenation of supercritical carbon dioxide[J]. Nature, 1994, 368(6468): 231-233. |
9 | 于英民. 固载化钌基催化剂上超临界二氧化碳催化加氢合成甲酸反应研究[D]. 杭州: 浙江大学, 2006. |
YU Yingmin. Supercritical carbon dioxide catalytic hydrogenation to formic acid on the immobilized ruthenium catalyst[D]. Hangzhou: Zhejiang University, 2006. | |
10 | POKUSAEVA Yana, KOKLIN Aleksey, LUNIN Valery, et al. CO2 hydrogenation on Fe-based catalysts doped with potassium in gas phase and under supercritical conditions[J]. Mendeleev Communications, 2019, 29(4): 382-384. |
47 | HIYOSHI Norihito, RODE Chandrashekhar, SATO Osamu, et al. Stereoselective hydrogenation of tert-butylphenols over charcoal-supported rhodium catalyst in supercritical carbon dioxide solvent[J]. Journal of Catalysis, 2007, 252(1): 57-68. |
48 | SHIRAI M, HIYOSHI N, RODE C. Stereoselective aromatic ring hydrogenation over supported rhodium catalysts in supercritical carbon dioxide solvent[J]. The Chemical Record, 2019, 19(9): 1926-1934. |
49 | VASIL’EV A, KUCHUROV I, ZLOTIN S. 1,4-cis-Hydrogenation of butyl sorbate in supercritical carbon dioxide[J]. Russian Chemical Bulletin, 2018, 67(5): 923-926. |
50 | HAMMOND D, KAREL M, KLIBANOV A, et al. Enzymatic reactions in supercritical gases[J]. Applied Biochemistry and Biotechnology, 1985, 11(5): 393-400. |
51 | Željko KNEZ. Enzymatic reactions in subcritical and supercritical fluids[J]. The Journal of Supercritical Fluids, 2018, 134: 133-140. |
52 | DIAS Arthu, HATAMI Tahmasb, Julian MARTíNEZ, et al. Biocatalytic production of isoamyl acetate from fusel oil in supercritical CO2[J]. The Journal of Supercritical Fluids, 2020, 164: 104917. |
53 | SANTOS Philipe DOS, MEIRELES Angela, Julian MARTíNEZ. Production of isoamyl acetate by enzymatic reactions in batch and packed bed reactors with supercritical CO2[J]. The Journal of Supercritical Fluids, 2017, 127: 71-80. |
54 | HU Lizhi, LLIBIN Sun, LI Jun, et al. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2[J]. Bioprocess and Biosystems Engineering, 2015, 38(12): 2343-2347. |
55 | TAHER Hanifa, GIWA Adewale, ABUSABIEKEH Hana, et al. Biodiesel production from nannochloropsis gaditana using supercritical CO2 for lipid extraction and immobilized lipase transesterification: economic and environmental impact assessments[J]. Fuel Processing Technology, 2020, 198: 106249. |
56 | KMECZ Ildikó, Béla SIMáNDI, László POPPE, et al. Lipase-catalyzed enantioselective acylation of 3-benzyloxypropane-1,2-diol in supercritical carbon dioxide[J]. Biochemical Engineering Journal, 2006, 28(3): 275-280. |
57 | Uğur SALGIN, SALGIN Sema, TAKAC Serpil. The enantioselective hydrolysis of racemic naproxen methyl ester in supercritical CO2 using Candida rugosa lipase[J]. The Journal of Supercritical Fluids, 2007, 43(2): 310-316. |
58 | RATHKE J, KLINGLER R, KRAUSE T. Propylene hydroformylation in supercritical carbon dioxide[J]. Organometallics, 1991, 10: 1350-1355. |
59 | KOEKEN Ard, BAKKER Stefan, COSTERUS Hester, et al. Evaluation of pressure and correlation to reaction rates during homogeneously catalyzed hydroformylation in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2008, 46(1): 47-56. |
60 | KOEKEN Ard, BROEKE Leo, BENES Nieck, et al. Triphenylphosphine modified rhodium catalyst for hydroformylation in supercritical carbon dioxide[J]. Journal of Molecular Catalysis A: Chemical, 2011, 346(1): 94-101. |
61 | GALIA Andrea, CIPOLLINA Andrea, FILARDO Giuseppe, et al. Hydroformylation of 1-octene in supercritical carbon dioxide: can alkylation of arylphosphines with tertbutyl groups lead to soluble and active catalytic systems?[J]. The Journal of Supercritical Fluids, 2008, 46: 63-70. |
62 | MELFI Diego, SANTOS Kallynca, RAMOS Luiz, et al. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15[J]. The Journal of Supercritical Fluids, 2020, 158: 104736. |
63 | DESIMONE J M, GUAN Z, ELSBERND C. Synthesis of fluoropolymers in supercritical carbon dioxide[J]. Science, 1992, 257(5072): 945-947. |
64 | DU Libin, KELLY Jennifer, ROBERTS George, et al. Fluoropolymer synthesis in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2009, 47(3): 447-457. |
65 | KAZARYAN Polina, TYUTYUNOV Andrey, KONDRATENKO Mikhail, et al. Superhydrophobic coatings on textiles based on novel poly(perfluoro-tert-hexylbutyl methacrylate-co-hydroxyethyl methacrylate) copolymer deposited from solutions in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2019, 149: 34-41. |
66 | SHIEH Yeong-Tarng, CHEN Bo-Hong, WANG Tzong-Liu, et al. Supercritical CO2 affects the copolymerization, LCST behavior, thermal properties, and hydrogen bonding interactions of poly(N-isopropylacrylamide-co-acrylic acid)[J]. The Journal of Supercritical Fluids, 2017, 130: 373-380. |
67 | ELMANOVICH Igor, STAKHANOV Andrey, ZEFIROV Vadim, et al. Thermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2020, 158: 104744. |
68 | 李虹, 徐安厚, 张永明. 超临界二氧化碳中含氟聚合物的合成[J]. 化学进展, 2007, 19(10): 1562-1567. |
LI Hong, XU Anhou, ZHANG Yongming. Synthesis of fluoropolymers in supercritical carbon dioxide[J]. Progress in Chemistry, 2007, 19(10): 1562-1567. | |
69 | 朱芸, 张炉青, 耿兵, 等. 超临界CO2中含氟聚合物的合成及发展[J]. 山东化工, 2012, 41(3): 64-67. |
ZHU Yun, ZHANG Luqing, GENG Bing, et al. Synthesis and development of fluoropolymers in supercritical carbon dioxide [J]. Shandong Chemical Industry, 2012, 41(3): 64-67. | |
11 | EVDOKIMENKO Nikolay, KUSTOV Alexander, KIM Konstantin, et al. Direct hydrogenation of CO2 on deposited iron-containing catalysts under supercritical conditions[J]. Mendeleev Communications, 2018, 28: 147-149. |
12 | 高菲. 超临界相合成酚酸的研究[D]. 济南: 山东轻工业学院, 2007. |
GAO Fei. Synthesis of phenolic acid under supercritical conditions[D]. Jinan: Shandong Polytechnic University, 2007. | |
13 | IIJIMA Takayuki, YAMAGUCHI Tatsuaki. Efficient regioselective carboxylation of phenol to salicylic acid with supercritical CO2 in the presence of aluminium bromide[J]. Journal of Molecular Catalysis A: Chemical, 2008, 295(1/2): 52-56. |
14 | IIJIMA Takayuki, YAMAGUCHI Tatsuaki. K2CO3-catalyzed direct synthesis of salicylic acid from phenol and supercritical CO2[J]. Applied Catalysis A: General, 2008, 345(1): 12-17. |
15 | 张楠. 超临界二氧化碳合成水杨酸的研究[D]. 石家庄: 河北科技大学, 2013. |
ZHANG Nan. Research on synthesis of salicylic acid by supercritical carbon dioxide[D]. Shijiazhuang: Hebei University of Science and Technology, 2013. | |
16 | 郑轶武. 超临界化学反应合成对羟基苯甲酸的研究[D]. 广州: 暨南大学, 2000. |
ZHENG Yiwu. Studies on supercritical fluid chemistry reaction to synthesis p-hydroxybenzoic acid[D]. Guangzhou: Jinan University, 2000. | |
17 | ZHANG Xibao, LIU Yuanxing, LUO Zhenghong. Kinetic study of the aqueous Kolbe-Schmitt synthesis of 2,4- and 2,6-dihydroxybenzoic acids[J]. Chemical Engineering Science, 2019, 195: 107-119. |
18 | 胡斯翰, 徐明仙, 丁春晓, 等. 超临界CO2在有机合成中的资源化利用[J]. 化工进展, 2010, 29(6): 984-990. |
HU Sihan, XU Mingxian, DING Chunxiao, et al. Utilization of CO2 in organic synthesis based on supercritical fluid reaction[J]. Chemical Industry and Engineering Progress, 2010, 29(6): 984-990. | |
19 | TAMBOLI Ashif, CHAUGULE Avinash, KIM Hern. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chemical Engineering Journal, 2017, 323: 530-544. |
20 | LI Hongguang, ZHANG Guoquan, WANG Yi, et al. Transesterification of ethylene carbonate with methanol over Zn-La mixed oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 977-984. |
21 | MARCINIAK Aryane, ALVES Odivaldo, APPEL Lucia, et al. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent[J]. Journal of Catalysis, 2019, 371: 88-95. |
22 | LI Aixue, PU Yanfeng, LI Feng, et al. Synthesis of dimethyl carbonate from methanol and CO2 over Fe-Zr mixed oxides[J]. Journal of CO2 Utilization, 2017, 19: 33-39. |
23 | XUAN Keng, PU Yanfeng, LI Feng, et al. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chinese Journal of Catalysis, 2019, 40(4): 553-566. |
24 | LIU Chun, ZHANG Shaoke, CAI Baoyi, et al. Low pressure one-pot synthesis of dimethyl carbonate catalyzed by an alkali carbonate[J]. Chinese Journal of Catalysis, 2015, 36(7): 1136-1141. |
25 | POUNGSOMBATE Atikun, IMYEN Thidarat, DITTANET Peerapan, et al. Direct synthesis of dimethyl carbonate from CO2 and methanol by supported bimetallic Cu-Ni / ZIF-8 MOF catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 16-24. |
26 | Danielle BALLIVET-TKATCHENKO, CHAMBREY Stéphane, KEISKI Riitta, et al. Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: Characterization of a key organotin oxide intermediate[J]. Catalysis Today, 2006, 115(1-4): 80-87. |
27 | CHOI Junchul, HE Liangnian, YASUDA Hiroyuki, et al. Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol[J]. Green Chemistry, 2002, 4(3): 230-234. |
28 | 邢世才, 郑岚, 王玉琪, 等. KOH/C催化超临界CO2与CH3OH直接合成碳酸二甲酯的研究[J]. 高校化学工程学报, 2015, 29(5): 1120-1125. |
XING Shicai, ZHENG Lan, WANG Yuqi, et al. Direct synthesis of dimethyl carbonate with CO2 and CH3OH catalyzed by KOH/C under supercritical conditions[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(5): 1120-1125. | |
29 | 孙雯. 过渡金属氧化物催化超临界CO2与甲醇一步法合成碳酸二甲酯[D]. 西安: 西北大学, 2018. |
SUN Wen. Synthesis of dimethyl carbonate from supercritical CO2 and methanol catalyzed by transition metal oxide through one-step method[D]. Xi’an: Northwest University, 2018. | |
30 | GASC Fabien, THIEBAUD Sophie, MOULOUNGUI Zephirin. Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate[J]. The Journal of Supercritical Fluids, 2009, 50(1): 46-53. |
31 | CHANG Yanhong, JIANG Tao, HAN Buxing, et al. One-pot synthesis of dimethyl carbonate and glycols from supercritical CO2, ethylene oxide or propylene oxide, and methanol[J]. Applied Catalysis A: General, 2004, 263(2): 179-186. |
32 | 徐明仙, 沈德平, 邹羽芯, 等. 超临界CO2中一釜法合成碳酸二甲酯的研究[J]. 高校化学工程学报, 2014, 28(6): 1334-1339. |
XU Mingxian, SHEN Deping, ZOU Yuxin, et al. One-pot synthesis of dimethyl carbonate in supercritical CO2[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(6): 1334-1339. | |
33 | KAYAKI Yoshihito, YAMAMOTO Masafumi, SUZUKI Tomoyuki, et al. Carboxylative cyclization of propargylamines with supercritical carbon dioxide[J]. Green Chemistry, 2006, 8(12): 1019-1021. |
34 | KAYAKI Yoshihito, YAMAMOTO Masafumi, IKARIYA Takao. Stereoselective formation of α-alkylidene cyclic carbonates viacarboxylative cyclization of propargyl alcohols in supercritical carbon dioxide[J]. The Journal of Organic Chemistry, 2007, 72(2): 647-649. |
35 | LI Fawang, SUO Quanling, HONG Hailong, et al. DBU and copper(Ⅰ) mediated carboxylation of terminal alkynes using supercritical CO2 as a reactant and solvent[J]. Tetrahedron Letters, 2014, 55(29): 3878-3880. |
36 | 孟庆洋. 有机锌、钴催化体系催化二氧化碳/环氧化合物共聚合研究[D]. 上海: 华东理工大学, 2016. |
MENG Qingyang. Study on copolymerization of CO2 with epoxides over organo-zinc/cobalt complex catalyst system[D]. Shanghai: East China University of Science and Technology, 2016. | |
37 | 田杰生, 王金泉, 杜亚, 等. 二氧化碳与环氧化物的共聚反应[J]. 化学进展, 2006, 18(1): 74-79. |
TIAN Jiesheng, WANG Jinquan, DU Ya, et al. Copolymerization of carbon dioxide with 1, 2-epoxides[J]. Progress in Chemistry, 2006, 18(1): 74-79. | |
38 | 陈加福. 超临界CO2-碱金属体系碳化硅的低温合成与表征[D]. 合肥: 中国科学技术大学, 2006. |
CHEN Jiafu. Low temperature synthesis and characterization of silicon carbide in supercritical CO2-alkali metal system[D]. Hefei: University of Science and Technology of China, 2006. | |
39 | CAMARILLO Rafael, RIZALDOS Daniel, Carlos JIMÉNEZ, et al. Enhancing the photocatalytic reduction of CO2 with undoped and Cu-doped TiO2 nanofibers synthesized in supercritical medium[J]. The Journal of Supercritical Fluids, 2019, 147: 70-80. |
40 | Rotana HAY, CELIK Kemal. Accelerated carbonation of reactive magnesium oxide cement (RMC)-based composite with supercritical carbon dioxide (scCO2)[J]. Journal of Cleaner Production, 2020, 248: 119282. |
41 | 杨雯晶. 超临界二氧化碳体系中乙酰丙酸加氢反应的研究[D]. 长春: 长春工业大学, 2016. |
YANG Wenjing. Hydrogenation of levulinic acid in supercritical carbon dioxide system[D]. Changchun: Changchun University of Technology, 2016. | |
42 | KRIAA K, SERIN J, CONTAMINE F, et al. 2-Butyne-1,4-diol hydrogenation in supercritical CO2: effect of hydrogen concentration[J]. The Journal of Supercritical Fluids, 2009, 49(2): 227-232. |
43 | YILMAZ Filiz, MUTLU Aylin, Hakan ÜNVER, et al. Hydrogenation of olefins catalyzed by Pd(Ⅱ) complexes containing a perfluoroalkylated S,O-chelating ligand in supercritical CO2 and organic solvents[J]. The Journal of Supercritical Fluids, 2010, 54(2): 202-209. |
44 | YADAV Ganapati, LAWATE Yuvraj. Selective hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea supported Pd–Cu catalyst in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2011, 59: 78-86. |
45 | PIQUERAS C, PUCCIA V, VEGA D, et al. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me-CeO2 (Me =Cu, Pt, Au): insight of the role of Me-Ce interaction[J]. Applied Catalysis B: Environmental, 2016, 185: 265-271. |
46 | PIQUERAS Cristian, GUTIERREZ Victoria, VEGA Daniel, et al. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Pt/SiO2 and Pt/HS-CeO2: an insight about the role of carbonyl interaction with supercritical CO2 or with ceria support sites in cinamyl alcohol selectivity[J]. Applied Catalysis A: General, 2013, 467: 253-260. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[12] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[13] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |