Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 565-576.DOI: 10.16085/j.issn.1000-6613.2020-1401
• Invited review • Previous Articles Next Articles
Minjie XU1(), Minghui ZHU1, Tianyuan CHEN1, Jing XU1, Zixu YANG1, Yifan HAN1,2()
Received:
2020-07-20
Revised:
2020-11-14
Online:
2021-02-09
Published:
2021-02-05
Contact:
Yifan HAN
徐敏杰1(), 朱明辉1, 陈天元1, 徐晶1, 杨子旭1, 韩一帆1,2()
通讯作者:
韩一帆
作者简介:
徐敏杰(1995—),男,博士研究生。E-mail:CLC Number:
Minjie XU, Minghui ZHU, Tianyuan CHEN, Jing XU, Zixu YANG, Yifan HAN. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576.
徐敏杰, 朱明辉, 陈天元, 徐晶, 杨子旭, 韩一帆. CO2高值化利用:CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1401
1 | 薛博, 刘勇, 王沉, 等. 碳捕获、封存与利用技术及煤层封存CO2研究进展[J]. 化学世界, 2020, 61(4): 294-297. |
XUE Bo, LIU Yong, WANG CHen, et al. Progress on carbon capture,storge and utilization technology and coal seam CO2 storage[J]. Chemical World, 2020, 61(4): 294-297. | |
2 | JIANG Kai, ASHWORTH Peta, ZHANG Shiyi, et al. China’s carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601. |
3 | 李庆勋, 王宗宝, 娄舒洁, 等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工, 2019(5): 19-23. |
LI Qinxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019(5): 19-23. | |
4 | MCFARLAN Andrew. Techno-economic assessment of pathways for electricity generation in northern remote communities in Canada using methanol and dimethyl ether to replace diesel[J]. Renewable and Sustainable Energy Reviews, 2018, 90(8): 63-76. |
5 | LI Wenhui, WANG Haozhi, JIANG Xiao, et al. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. RSC Advances, 2018, 8(14): 7651-7669. |
6 | YANG Haiyan, ZHANG Chen, GAO Peng, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. |
7 | LI Jiachen, WANG Liguo, CAO Yan, et al. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2266-2279. |
8 | SHEN W J, JUN K W, CHOI H S, et al. Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 hydrogenation[J]. Korean Journal of Chemical Engineering, 2000, 17(2): 210-216. |
9 | 丁凡舒, 聂小娃, 刘民, 等. Fe基催化剂上二氧化碳加氢制C2+烃的研究进展[J]. 应用化学,2016, 2(33): 123-132. |
DING Fanshu, NIE Xiaowa, LIU Min, et al. Research progress in catalytic conversion of carbon dioxide to C2+ hydrocarbons over Fe-based catalysts[J]. Chinese Journal of Applied Chemistry, 2016, 2(33): 123-132. | |
10 | 张忠涛, 李方伟, 迟克彬, 等. 甲醇工艺新进展[J]. 辽宁化工, 2001,30(11): 477-480. |
ZHANG Zhongtao, LI Fangwei, CHI Kebin, et al. New development of methanol technology[J]. Liaoning Chemical Industry, 2001, 30(11): 477-480. | |
11 | BANSODE Atul, URAKAWA Atsushi. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. Journal of Catalysis, 2014, 309: 66-70. |
12 | ANGELO Laetitia, KOBL Kilian, TEJADA Leidy Marcela Martinez, et al. Study of CuZnMOx oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. Comptes Rendus Chimie, 2015, 18(3): 250-260. |
13 | LIAO F L, HUANG Y, GE J, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(9): 2162-2165. |
14 | PHONGAMWONG Thanaree, CHANTAPRASERTPORN Usanee, WITOON Thongthai, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effects of SiO2 contents[J]. Chem. Eng. J. (Amsterdam, Neth), 2017, 316: 692-703. |
15 | BANSODE Atul, TIDONA Bruno, ROHR Philipp Rudolf VON, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catal. Sci. Technol., 2013, 3(3): 767-778. |
16 | JIANG Xiao, KOIZUMI Naoto, GUO Xinwen, et al. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol[J]. Applied Catalysis B: Environmental, 2015, 170/171: 173-185. |
17 | LADERA Rosa, PÉREZ-ALONSO Francisco J, GONZÁLEZ-CARBALLO Juan M, et al. Catalytic valorization of CO2via methanol synthesis with Ga-promoted Cu-ZnO-ZrO2 catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 241-248. |
18 | JAMIL Toyir, PILAR Ramírez de la Piscina, Luis G Fierro JOSÉ, et al. Highly effective conversion of CO to methanol over supported and promoted copper-based catalysts influence of support and promoter[J]. Applied Catalysis B: Environmental, 2001, 29: 207-215. |
19 | SŁOCZYŃSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Applied Catalysis A: General, 2006, 310: 127-137. |
20 | ARENA Francesco, MEZZATESTA Giovanni, ZAFARANA Giovanni, et al. Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation[J]. Journal of Catalysis, 2013, 300(1): 41-51. |
21 | WITOON Thongthai, CHALORNGTHAM Jiraporn, DUMRONGBUNDITKUL Porntipar, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases[J]. Chem. Eng. J. (Amsterdam, Neth), 2016, 293(3): 27-36. |
22 | LI Molly Meng-Jung, ZENG Ziyan, LIAO Fenglin, et al. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts[J]. Journal of Catalysis, 2016, 343: 157-167. |
23 | KUSAMA Hitoshi, OKABE Kiyomi, SAYAMA Kazuhiro, et al. CO2 hydrogenation to ethanol over promoted Rh SiO2 catalysts[J]. Catalysis Today, 1996, 28: 261-266. |
24 | KONG H, LI H Y, LIN G D, et al. Pd-decorated CNT-promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol[J]. Catalysis Letters, 2011, 141(6): 886-894. |
25 | QU Jin, ZHOU Xiwen, XU Feng, et al. Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation[J]. The Journal of Physical Chemistry C, 2014, 118(42): 24452-24466. |
26 | VENUGOPAL Akula, PALGUNADI Jelliarko, DEOG Jung-Kwang, et al. Hydrotalcite derived Cu-Zn-Cr catalysts admixed with γ-Al2O3 for single step dimethyl ether synthesis from syngas: influence of hydrothermal treatment[J]. Catalysis Today, 2009, 147(2): 94-99. |
27 | SONG Yingquan, LIU Xiaoran, XIAO Linfei, et al. Pd-promoter/MCM-41: a highly effective bifunctional catalyst for conversion of carbon dioxide[J]. Catalysis Letters, 2015, 145(6): 1272-1280. |
28 | WU Jingang, MASAHIRO Saito, MASAMI Takeuchi, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Applied Catalysis A: General, 2001, 218: 235-240. |
29 | WANG J J, LI G N, LI Z L, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): 1-10. |
30 | UMEGAKI Tetsuo, KURATANI Kentaro, YAMADA Yusuke, et al. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts[J]. Journal of Power Sources, 2008, 179(2): 566-570. |
31 | LORENZ Harald, JOCHUM Wilfrid, Bernhard KLÖTZER, et al. Novel methanol steam reforming activity and selectivity of pure In2O3[J]. Applied Catalysis A: General, 2008, 347(1): 34-42. |
32 | SUN Kaihang, FAN Zhigang, YE Jingyun, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12: 1-6. |
33 | MARTIN O, MARTIN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(21): 6261-6265. |
34 | STRÖM L, P-A CARLSSON, SKOGLUNDH M, et al. Hydrogen-assisted SCR of NOx over alumina-supported silver and indium catalysts using C2-hydrocarbons and oxygenates[J]. Applied Catalysis B: Environmental, 2016, 181: 403-412. |
35 | YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. The Journal of Physical Chemistry C, 2012, 116(14): 7817-7825. |
36 | YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3 (110): a DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306. |
37 | YE Jingyun, LIU Chang-jun, MEI Donghai, et al. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study[J]. Journal of Catalysis, 2014, 317: 44-53. |
38 | RUI Ning, WANG Zongyuan, SUN Kaihang, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497. |
39 | FREI M S, CAPDEVILA-CORTADA M, GARCíA-MUELAS R, et al. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321. |
40 | ZHANG Minhua, DOU Maobin, YU Yingzhe. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation[J]. Applied Surface Science, 2018, 433: 780-789. |
41 | ZHANG M H, DOU M B, YU Y Z. DFT study of CO2 conversion on InZr3(110) surface[J]. Phys. Chem. Chem. Phys., 2017, 19(42): 28917-28927. |
42 | DOU Maobin, ZHANG Minhua, CHEN Yifei, et al. DFT study of In2O3-catalyzed methanol synthesis from CO2 and CO hydrogenation on the defective site[J]. New Journal of Chemistry, 2018, 42(5): 3293-3300. |
43 | TSOUKALOU A, ABDALA P M, STOIAN D, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study[J]. J. Am. Chem. Soc., 2019, 141(34): 13497-13505. |
44 | CHEN Pengjing, TAO Longang, ZHU Jian, et al. Morphology-controllable hexagonal-phase indium oxide in situ structured onto a thin-felt Al2O3/Al-Fiber for the hydrogenation of CO2 to methanol[J]. Energy Technology, 2019, 7(3): 1800747. |
45 | CHEN Tian-yuan, CAO Chenxi, CHEN Tianbao, et al. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catalysis, 2019, 9(9): 8785-8797. |
46 | FREI Matthias S, MONDELLI Cecilia, CESARINI Alessia, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 10(2): 1133-1145. |
47 | 曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报,2019, 70(10): 3985-3993. |
CAO Chenxi, CHEN Tianyuan, DING Xiaoxu, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation[J]. CIESC Journal, 2019, 70(10): 3985-3993. | |
48 | SHI Zhisheng, TAN Qingqing, WU Dongfang. A novel core-shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE Journal, 2018, 65(3): 1047-1058. |
49 | SNIDER Jonathan L, STREIBEL Verena, HUBERT McKenzie A, et al. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(4): 3399-3412. |
50 | FREI M S, MONDELLI C, GARCIA-MUELAS R, et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation[J]. Nat. Commun., 2019, 10(1): 3377. |
51 | AKKHARAPHATTHAWON Naphattanun, CHANLEK Narong, CHENG Chin Kui, et al. Tuning adsorption properties of GaxIn2-xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature[J]. Applied Surface Science, 2019, 489(2):78-86. |
52 | CHOU Chen-Yu, LOBO Raul F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts[J]. Applied Catalysis A: General, 2019, 583: 117144. |
53 | GAO P, LI S G, BU X N, et al. Direct conversion of CO2 =into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat. Chem., 2017, 9(10): 1019-1024. |
54 | GAO P, DANG S S, LI S G, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2017, 8(1): 571-578. |
55 | DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364(3): 82-93. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[7] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[11] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |