Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 97-105.DOI: 10.16085/j.issn.1000-6613.2020-1170
• Chemical processes and equipment • Previous Articles Next Articles
Hongjie LOU(), Xiansong ZHANG, Xingjian JIANG, Qizhong HUANG, Wei LIU, Jianhua HE, Miaomiao ZHOU, Yanjing HU
Received:
2020-06-24
Online:
2020-11-17
Published:
2020-11-20
Contact:
Hongjie LOU
娄红杰(), 张先松, 姜兴剑, 黄起中, 刘威, 何建华, 周苗苗, 胡艳晶
通讯作者:
娄红杰
作者简介:
娄红杰(1971—),女,工程师,研究方向为煤化工分析检测。E-mail:基金资助:
CLC Number:
Hongjie LOU, Xiansong ZHANG, Xingjian JIANG, Qizhong HUANG, Wei LIU, Jianhua HE, Miaomiao ZHOU, Yanjing HU. Sediment analysis system and diagnosis technology based on system engineering method[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 97-105.
娄红杰, 张先松, 姜兴剑, 黄起中, 刘威, 何建华, 周苗苗, 胡艳晶. 基于系统工程法的沉积物分析体系及诊断技术[J]. 化工进展, 2020, 39(S2): 97-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1170
序号 | 元素 | 线性范围/μg·mL-1 | 线性方程 | 相关系数 | 检出限/% |
---|---|---|---|---|---|
1 | 铁 | 0~20.00 | C=0.000002432 I-0.064203838 | 0.99993 | 0.0004 |
2 | 铝 | 0~20.00 | C=0.000010297 I+0.066971519 | 0.99993 | 0.0004 |
3 | 钙 | 0~20.00 | C=0.000005408 I-0.015359218 | 0.99998 | 0.0006 |
4 | 镁 | 0~20.00 | C=0.000018777 I-0.007440642 | 0.99997 | 0.0005 |
5 | 锌 | 0~20.00 | C=0.009800177 I+0.068958491 | 0.99995 | 0.0005 |
6 | 铜 | 0~20.00 | C=0.000001403 I+0.107832931 | 0.99990 | 0.0004 |
7 | 铬 | 0~20.00 | C=0.000004030 I-0.100648503 | 0.99991 | 0.0005 |
8 | 钾 | 0~20.00 | C=0.000000313 I+0.106970959 | 0.99978 | 0.0007 |
9 | 磷 | 0~20.00 | C=0.093384396 I-0.124892455 | 0.99969 | 0.0010 |
序号 | 元素 | 线性范围/μg·mL-1 | 线性方程 | 相关系数 | 检出限/% |
---|---|---|---|---|---|
1 | 铁 | 0~20.00 | C=0.000002432 I-0.064203838 | 0.99993 | 0.0004 |
2 | 铝 | 0~20.00 | C=0.000010297 I+0.066971519 | 0.99993 | 0.0004 |
3 | 钙 | 0~20.00 | C=0.000005408 I-0.015359218 | 0.99998 | 0.0006 |
4 | 镁 | 0~20.00 | C=0.000018777 I-0.007440642 | 0.99997 | 0.0005 |
5 | 锌 | 0~20.00 | C=0.009800177 I+0.068958491 | 0.99995 | 0.0005 |
6 | 铜 | 0~20.00 | C=0.000001403 I+0.107832931 | 0.99990 | 0.0004 |
7 | 铬 | 0~20.00 | C=0.000004030 I-0.100648503 | 0.99991 | 0.0005 |
8 | 钾 | 0~20.00 | C=0.000000313 I+0.106970959 | 0.99978 | 0.0007 |
9 | 磷 | 0~20.00 | C=0.093384396 I-0.124892455 | 0.99969 | 0.0010 |
序号 | 分子式 | 质量分数/% | 定性评估 | 康普顿线比率 |
---|---|---|---|---|
1 | Al2O3 | 53.20 | 0.981 | |
2 | Cr2O3 | 16.3 | ||
3 | P2O5 | 12.50 | ||
4 | Si02 | 11.70 | ||
5 | Fe2O3 | 2.51 | ||
6 | CaO | 1.79 | ||
7 | MgO | 1.70 | ||
8 | ZnO | 0.17 | ||
9 | CuO | 0.10 | ||
10 | TiO2 | 0.07 | 可忽略不计 | |
11 | K2O | 0.03 | 可忽略不计 | |
12 | SrO | 0.01 | 可忽略不计 | |
13 | ZrO2 | 0.01 | 可忽略不计 |
序号 | 分子式 | 质量分数/% | 定性评估 | 康普顿线比率 |
---|---|---|---|---|
1 | Al2O3 | 53.20 | 0.981 | |
2 | Cr2O3 | 16.3 | ||
3 | P2O5 | 12.50 | ||
4 | Si02 | 11.70 | ||
5 | Fe2O3 | 2.51 | ||
6 | CaO | 1.79 | ||
7 | MgO | 1.70 | ||
8 | ZnO | 0.17 | ||
9 | CuO | 0.10 | ||
10 | TiO2 | 0.07 | 可忽略不计 | |
11 | K2O | 0.03 | 可忽略不计 | |
12 | SrO | 0.01 | 可忽略不计 | |
13 | ZrO2 | 0.01 | 可忽略不计 |
序号 | 分子式 | 质量分数/% | 定性评估 | 康普顿线比率 |
---|---|---|---|---|
1 | Fe2O3 | 93.29 | 0.967 | |
2 | SiO2 | 3.98 | ||
3 | AL2O3 | 1.76 | ||
4 | CaO | 0.27 | ||
5 | MgO | 0.14 | ||
6 | K2O | 0.12 | ||
7 | Na2O | 0.09 | 可忽略不计 | |
8 | CuO | 0.08 | 可忽略不计 | |
9 | Cl | 0.08 | 可忽略不计 | |
10 | ZnO | 0.06 | 可忽略不计 | |
11 | P2O5 | 0.05 | 可忽略不计 | |
12 | Cr2O3 | 0.02 | 可忽略不计 | |
13 | TiO2 | 0.02 | 可忽略不计 | |
14 | BaO | 0.02 | 可忽略不计 | |
15 | Ce2O3 | 0.009 | 可忽略不计 | |
16 | SrO | 0.007 | 可忽略不计 | |
17 | As2O3 | 0.007 | 可忽略不计 | |
18 | ZrO2 | 0.002 | 可忽略不计 |
序号 | 分子式 | 质量分数/% | 定性评估 | 康普顿线比率 |
---|---|---|---|---|
1 | Fe2O3 | 93.29 | 0.967 | |
2 | SiO2 | 3.98 | ||
3 | AL2O3 | 1.76 | ||
4 | CaO | 0.27 | ||
5 | MgO | 0.14 | ||
6 | K2O | 0.12 | ||
7 | Na2O | 0.09 | 可忽略不计 | |
8 | CuO | 0.08 | 可忽略不计 | |
9 | Cl | 0.08 | 可忽略不计 | |
10 | ZnO | 0.06 | 可忽略不计 | |
11 | P2O5 | 0.05 | 可忽略不计 | |
12 | Cr2O3 | 0.02 | 可忽略不计 | |
13 | TiO2 | 0.02 | 可忽略不计 | |
14 | BaO | 0.02 | 可忽略不计 | |
15 | Ce2O3 | 0.009 | 可忽略不计 | |
16 | SrO | 0.007 | 可忽略不计 | |
17 | As2O3 | 0.007 | 可忽略不计 | |
18 | ZrO2 | 0.002 | 可忽略不计 |
污垢综合分析体系 | 分析项目 | 符号 | 分析结果 /% | 归一化 结果/% |
---|---|---|---|---|
基础分析体系 | 灼烧减量550℃ | W | 66.06 | 65.71 |
灼烧减量950℃ | W | 2.02 | 2.01 | |
酸不溶物 | SiO2 | 7.48 | 7.44 | |
五氧化二磷 | P2O5 | 1.48 | 1.47 | |
三氧化二铁 | Fe2O3 | 1.23 | 1.22 | |
三氧化二铝 | Al2O3 | 16.49 | 16.40 | |
氧化钙 | CaO | 1.10 | 1.09 | |
氧化镁 | MgO | 1.49 | 1.48 | |
随机分析体系 | 三氧化二铬 | Cr2O3 | 3.07 | 3.05 |
氧化锌 | ZnO | 0.10 | 0.10 | |
氧化铜 | CuO | 0.02 | 0.02 | |
总计 | 100.54 | 100 |
污垢综合分析体系 | 分析项目 | 符号 | 分析结果 /% | 归一化 结果/% |
---|---|---|---|---|
基础分析体系 | 灼烧减量550℃ | W | 66.06 | 65.71 |
灼烧减量950℃ | W | 2.02 | 2.01 | |
酸不溶物 | SiO2 | 7.48 | 7.44 | |
五氧化二磷 | P2O5 | 1.48 | 1.47 | |
三氧化二铁 | Fe2O3 | 1.23 | 1.22 | |
三氧化二铝 | Al2O3 | 16.49 | 16.40 | |
氧化钙 | CaO | 1.10 | 1.09 | |
氧化镁 | MgO | 1.49 | 1.48 | |
随机分析体系 | 三氧化二铬 | Cr2O3 | 3.07 | 3.05 |
氧化锌 | ZnO | 0.10 | 0.10 | |
氧化铜 | CuO | 0.02 | 0.02 | |
总计 | 100.54 | 100 |
污垢综合分析体系 | 分析项目 | 符号 | 分析结果 /% | 归一化分析结果/% |
---|---|---|---|---|
基础分析体系 | 灼烧减量550℃ | W | 26.97 | 26.79 |
灼烧减量950℃ | W | 0.36 | 0.36 | |
酸不溶物 | SiO2 | 6.85 | 6.80 | |
三氧化二铁 | Fe2O3 | 62.51 | 62.08 | |
三氧化二铝 | Al2O3 | 2.80 | 2.78 | |
氧化钙 | CaO | 0.69 | 0.69 | |
氧化镁 | MgO | 0.50 | 0.50 | |
随机分析体系 | 氧化钾 | K2O | 0.006 | 0.006 |
总计 | 100.69 | 100 |
污垢综合分析体系 | 分析项目 | 符号 | 分析结果 /% | 归一化分析结果/% |
---|---|---|---|---|
基础分析体系 | 灼烧减量550℃ | W | 26.97 | 26.79 |
灼烧减量950℃ | W | 0.36 | 0.36 | |
酸不溶物 | SiO2 | 6.85 | 6.80 | |
三氧化二铁 | Fe2O3 | 62.51 | 62.08 | |
三氧化二铝 | Al2O3 | 2.80 | 2.78 | |
氧化钙 | CaO | 0.69 | 0.69 | |
氧化镁 | MgO | 0.50 | 0.50 | |
随机分析体系 | 氧化钾 | K2O | 0.006 | 0.006 |
总计 | 100.69 | 100 |
1 | 金熙,项成林, 齐冬子. 工业水处理技术问答[M]. 4版. 北京: 化学工业出版社, 2010: 313-314. |
JIN Xi, XIANG Chenglin, QI Dongzi. Industrial water treatment technology question and answer[M]. 4th ed. Beijing: Chemical Industry Press, 2010: 313-314. | |
2 | 杨善让,徐志明, 孙灵芳.换热设备污垢与对策[M]. 2版. 北京: 科学出版社,, 2004: 1-47. |
YANG Shanrang, XU Zhiming, SUN Lingfang. Dirt of heat exchange equipment and countermeasures [M]. 2ed. Beijing: Science Press, 2004: 1-47. | |
3 | 敬加强, 刘黎, 谢俊峰, 等. 输油管道腐蚀垢样中硫酸盐还原菌对Q235钢腐蚀行为的影响[J]. 腐蚀与防护, 2018, 39(1): 6-10. |
JING Jiaqiang, LIU Li, XIE Junfeng, et al. Effect of sulfate reducing bacteria on corrosion behavior of Q235 steel in corrosion scale of oil pipeline[J]. Corrosion and Protection, 2018, 39(1): 6-10. | |
4 | 邵和东. 探析工业循环冷却水系统水质防腐及控制方法[J]. 环境与发展, 2017(5): 106-108. |
SHAO Hedong. Analysis on the water quality anti-corrosion and control methods of industrial circulating cooling water system[J]. Environment and Development, 2017(5): 106-108. | |
5 | 杜晓燕, 黄玥诚, 张浩, 等. 化工行业氨泄漏处置技术现状及发展趋势[J]. 现代化工, 2018, 38(2): 6-10. |
DU Xiaoyan, HUANG Yuecheng, ZHANG Hao, et al. Current situation and development trend of ammonia leakage disposal technology in chemical industry[J]. Modern Engineering, 2018, 38(2): 6-10. | |
6 | 左官童. 某炼厂加氢精制高压换热器泄漏原因分析及总结[J]. 化工设计通讯, 2018, 44(1): 166. |
ZUO Guantong. Analysis and summary of the leakage causes of a high pressure heat exchanger in a refinery hydrofining[J]. Chemical Engineering Design Newsletter, 2018, 44(1): 166. | |
7 | 李成, 王坤洋, 何永江, 等. 某厂水冷换热器泄漏原因分析及处理[J]. 煤炭加工与综合利用, 2017(10): 72-76. |
LI Cheng, WANG Kunyang, HE Yongjiang, et al. Analysis and treatment of leakage of water cooling heat exchanger in a factory[J]. Coal Processing and Comprehensive Utilization, 2017(10): 72-76. | |
8 | 苏慧, 庄壮, 雍晓静. 甲醇制丙烯(MTP)反应器雾化喷嘴堵塞原因探析[J]. 石油化工应用, 2017, 36(1): 111-117. |
SU Hui, ZHUANG Zhuang, YONG Xiaojing. Analysis of the reasons for the atomization nozzle clogging of the methanol to propylene (MTP) reactor[J]. Petrochemical Industry Application, 2017, 36(1): 111-117. | |
9 | 马军鹏, 贺杠. 甲醇制烯烃水系统堵塞的处理方法[J]. 天然气化工(CI化学与化工), 2017, 42(5): 104-106. |
MA Junpeng, HE Gang. Treatment method of methanol to olefin water system blockage[J]. Natural Gas Chemical Industry, 2017, 42(5): 104-106. | |
10 | 方培林, 蒋维军, 高怡明. 秦皇岛33-1WHP平台水相滤网污垢成分分析[J]. 行业论坛, 2017, 36(6): 8-10. |
FANG Peilin, JIANG Weijun, GAO Yiming. Analysis of the blockage components of the water phase filter of Qinhuangdao 33-1WHP platform[J]. Industry Forum, 2017, 36(6): 8-10. | |
11 | 王睿, 王文娥, 胡笑涛, 等. 微灌用施肥泵施肥比例与肥水比对过滤器堵塞的影响[J]. 农业工程学报, 2017, 33(23): 117-122. |
WANG Rui, WANG Wen’e, HU Xiaotao, et al. The effect of fertilization ratio and fertilizer-water ratio of micro-irrigation pump on filter clogging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 117-122. | |
12 | 张利明, 图孟格勒, 肖克, 等. 高温高压气田处理厂污垢实验分析及对策[J]. 石油与天然气化工, 2017, 46(3): 13-16. |
ZHANG Liming, TUMENGLER, XIAO Ke, et al. Experimental analysis and countermeasures of plugs in high temperature and high pressure gas field treatment plant[J]. Petroleum and Natural Gas Chemical Industry, 2017, 46(3): 13-16. | |
13 | 鲁敏, 李房玉, 曹生现. 电磁场对循环冷却水微生物污垢及水质参数的影响[J]. 工业水处理, 2017, 37(11): 27-30. |
LU Min, LI Fangyu, CAO Shengxian. Effect of electromagnetic field on microbial fouling and water quality parameters of circulating cooling water[J]. Industrial Water Treatment, 2017, 37(11): 27-30. | |
14 | 王炜硕. 管道污垢监测技术研究进展[J]. 行业论坛, 2017, 36(7): 1-5. |
WANG Weishuo.. Research progress of pipeline fouling monitoring technology[J]. Industry Forum, 2017, 36(7): 1-5. | |
15 | 张传喜. 北京某热电低压蒸发器化学清洗分析与研究[J]. 清洗世界, 2017, 33(8): 12-15. |
ZHANG Chuanxi. Analysis and research on chemical cleaning of a thermoelectric low-pressure evaporator in Beijing[J]. Cleaning World, 2017, 33(8): 12-15. | |
16 | 徐志明, 胡春阳, 王景涛, 等. 板式换热器黏液形成菌与CaCO3混合污垢实验[J]. 化工学报, 2017, 68(1): 72-78. |
XU Zhiming, HU Chunyang, WANG Jingtao, al ed. Liu Zidong. Experiment of mixed fouling of slime forming bacteria and CaCO3 in a plate heat exchanger[J]. CIESC Journal, 2017, 68(1): 72-78. | |
17 | 陈琪华, 毛力, 钟志强, 等. 垃圾渗滤液蒸发系统故障诊断与处理[J]. 清洗世界, 2017, 33(6): 39-44. |
CHEN Qihua, MAO Li, ZHONG Zhiqiang, et al. Fault diagnosis and treatment of landfill leachate evaporation system [J]. Cleaning World, 2017, 33(6): 39-44. | |
18 | 金熙, 项成林, 齐冬子. 工业水处理技术问答[M]. 4版. 北京: 化学工业出版社, 2010: 314-318. |
JIN Xi, XIANG chenglin, QI Dongzi. Industrial water treatment technology question and answer[M]. 4th ed. Beijing: Chemical Industry Press, 2010: 314-318. | |
19 | 梁媛, 郭浩龙. ICP-OES法测阻垢缓蚀剂中总磷的含量[J]. 广州化工, 2017, 45(11): 139-143. |
LIANG Yuan, GUO Haolong. Determination of total phosphorus content in scale and corrosion inhibitor by ICP-OES method[J]. Guangzhou Chemical Industry, 2017, 45(11): 139-143. | |
20 | 潘嘉奇, 王彩萍, 陈恒, 等. 电感耦合等离子体发射光谱(ICP-OES)测定废水中的总磷方法改进[J]. 海峡科技与产业, 2017(1): 93-95. |
PAN Jiaqi, WANG Caiping, CHEN Heng, et al. Improvement of the method of inductively coupled plasma emission spectrometry (ICP-OES) for the determination of total phosphorus in wastewater[J]. Strait Technology & Industry, 2017(1): 93-95. | |
21 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 残渣燃料油中铝、硅、钒、镍、铁、钠、钙、锌及磷含量的测定 电感耦合等离子体发射光谱法: [S]. 北京: 中国标准出版社, 2018. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Administration Standardization. of the People's Republic of China. Determination of aluminum, silicon, vanadium, nickel, iron, sodium, calcium, zinc and phosphorus in residual fuel oil. Inductively coupled plasma emission spectrometry: [S]. Beijing: Standards Press of China, 2018. | |
22 | 中华人民共和国环境保护部. 固体废物 22种金属元素的测定 电感耦合等离子体发射光谱法: [S]. 北京: 中国环境科学出版社, 2016. |
Ministry of Environmental Protection of the People's Republic of China. Solid waste-Determination of 22 metal elements-Inductively coupled plasma optical emission spectrometry: [S]. Beijing: Environmental Science Press of China, 2016. | |
23 | 冯凤, 刘婧, 陶曦东. 电感耦合等离子体-原子发射光谱法同时测定铝合金中9种元素[J]. 化学分析计量, 2020, 29(1): 87-90. |
FENG Feng, LIU Jing, TIAO Xidong. Simultaneous determination of nine elements in aluminum alloy by inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Metrology, 2020, 29(1): 87-90. | |
24 | 夏家信. 合成氨催化剂活性降低原因的处理[J]. 化工设计通讯, 2017, 43(2): 4. |
XIA Jiaxin. Treatment of the reasons for the reduction of ammonia synthesis catalyst activity[J]. Chemical Engineering Design Newsletter, 2017, 43(2): 4. | |
25 | 雷玉平, 王娟娟. 合成氨催化剂技术与工艺发展研究[J]. 化工管理, 2018(1): 193. |
LEI Yuping, WANG Juanjuan. Research on the development of ammonia synthesis catalyst technology and process[J]. Chemical Engineering Management, 2018(1): 193. | |
26 | 武婵媛, 武婵娟, 王月昶. 氧化-还原过程对氧化铁基催化剂性能的影响[J]. 中氮肥, 2017(4): 15-17. |
WU Chanyuan, WU Chanjuan, WANG Yuechang. Effect of oxidation-reduction process on the performance of iron oxide-based catalysts[J]. Nitrogen Fertilizer, 2017(4): 15-17. |
[1] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[2] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[3] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[4] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[5] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[6] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[7] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[8] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[9] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
[10] | LU Sijia, LI Xiaoliang, ZHAO Huiyan, TIAN Zhijuan, ZHENG Xing. Electrochemical effects on fouling and corrosion of carbon steel in circulating cooling water systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2142-2150. |
[11] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[12] | GUAN Yongxin, ZHOU Qiang, CHEN Liyi, LI Hui, LIU Xiaonan. Research progress of organic silicon and organic fluorine low surface energy antifouling coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5286-5298. |
[13] | YANG Qingzheng, ZHANG Tailiang, LIU Congsheng, BAI Yi, CHENG Xin, ZHENG Cunchuan. Preparation and inhibition mechanism of gemini imidazoline quaternary ammonium salt inhibitor [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5436-5444. |
[14] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[15] | ZHAO Huacong, ZHU Weixuan, YE Haotian, DONG Hongguang. Research on synchronous optimization of steam power system for processing units and thermal power plant operation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 44-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |