1 |
FRIEDLINGSTEIN P, JONES M W, AMP O, et al. Global carbon budget 2019[J]. Earth System Science Data, 2019, 11(4):1783-1838.
|
2 |
韩涛,赵瑞,张帅,等. 燃煤电厂二氧化碳捕集技术研究及应用[J]. 煤炭工程, 2017, 49(S1): 24-28.
|
|
HAN Tao, ZHAO Rui, ZHANG Shuai, et al. Research and application on carbon capture of coal-fired power plants[J]. Coal Engineering, 2017, 49(S1): 24-28.
|
3 |
Samanta A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2011, 51(4): 1438-1463.
|
4 |
WANGM, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624.
|
5 |
ZHOU W, WANG J, CHEN P, et al. Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1163-1175.
|
6 |
MERKEL T C, LIN H, WEI X, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1-2): 126-139.
|
7 |
韩淑怡,王科,黄勇,等. 醇胺法脱硫脱碳技术研究进展[J]. 天然气与石油, 2014, 32(3): 19-22.
|
|
HAN Shuyi, WANG Ke, HUANG Yong, et al. Research progress of natural gas decarbonization and desulfurization based on alkanolamine[J]. Oil and Gas Treating and Processing, 2014, 32(3): 19-22.
|
8 |
MOLINA C T, BOUALLOU C. Assessment of different methods of CO2 capture in post-combustion using ammonia as solvent[J]. Journal of Cleaner Production, 2015, 103: 463-468.
|
9 |
牛振祺,郭印诚,林文漪. MEA、NaOH与氨水喷雾捕集CO2性能[J]. 清华大学学报(自然科学版), 2010, 50(7): 1130-1134.
|
|
NIU Zhenqi, GUO Yincheng, LIN Wenyi. Carbon dioxide removal efficiencies by fine sprays of MEA, NaOH and aqueous ammonia solutions[J]. Tsinghua Science and Technology, 2010, 50(7): 1130-1134.
|
10 |
ZHANG Z, LI Y, ZHANG W, et al. Effectiveness of amino acid salt solutions in capturing CO2: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 179-188.
|
11 |
林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886.
|
|
LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886.
|
12 |
CHEN S, WU Y, STEVENS G W, et al. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent[J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 415-424.
|
13 |
YANG L, XU M, YANG Y, et al. Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: evidence from China[J]. Applied Energy, 2019, 255: 113828.
|
14 |
BILANOVIC D, ANDARGATCHEW A, KROEGER T, et al. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis[J]. Energy Conversion and Management, 2009, 50(2): 262-267.
|
15 |
WANG B, LI Y, WU N, et al. CO2 bio-mitigation using microalgae[J]. Applied Microbiology and Biotechnology, 2008, 79(5): 707-718.
|
16 |
CLARENS A F, RESURRECCION E P, WHITEM A, et al. Environmental life cycle comparison of algae to other bioenergy feedstocks[J]. Environmental Science & Technology, 2010, 44(5): 1813-1819.
|
17 |
DONG T, KNOSHAUG E P, DAVIS R, et al. Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts[J]. Algal Research, 2016, 19: 316-323.
|
18 |
LUCAS B F, DEMORAISM G, SANTOS T D, et al. Spirulina for snack enrichment: nutritional, physical and sensory evaluations[J]. LWT—Food Science and Technology, 2018, 90: 270-276.
|
19 |
黄瑾,夏建荣,邹定辉. 微藻碳酸酐酶的特性及其环境调控[J]. 植物生理学通讯, 2010, 46(7): 631-636.
|
|
HUANG Jin, XIA Jianrong, ZOU Dinghui. Characteristics and environmental regulation of carbonic anhydrase in microalgae[J]. Plant Physiology Communications, 2010, 46(7): 631-636.
|
20 |
VUPPALADADIYAM A K, YAO J G, FLORIN N, et al. Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization[J]. Chem. Sus. Chem., 2018, 11(2): 334-355.
|
21 |
SONG C, LIU Q, QI Y, et al. Absorption-microalgae hybrid CO2 capture and biotransformation strategy: a review[J]. International Journal of Greenhouse Gas Control, 2019, 88: 109-117.
|
22 |
YIN D, WANG Z, WEN X, et al. Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium[J]. Environ. Sci. Pollut. Res. Int., 2019, 26(32): 32902-32910.
|
23 |
许海,刘兆普,袁兰,等. pH对几种淡水藻类生长的影响[J]. 环境科学与技术, 2009, 32(1): 27-30.
|
|
XU Hai, LIU Zhaopu, YUAN Lan, et al. Effect of pH on growth of several freshwater algae[J]. Environmental Science & Technology, 2009, 32(1): 27-30.
|
24 |
张奇,曹英昆,邢泽宇,等. pH、盐度对小球藻生长量和溶氧量的影响[J]. 湖北农业科学, 2018, 57(11): 83-86.
|
|
ZHANG Qi, CAO Yingkun, XING Zeyu, et al. Effects of pH and salinity on growth and dissolution of chlorella vlgaris[J]. Hubei Agricultural Sciences, 2018, 57(11): 83-86.
|
25 |
MEHAR J, SHEKH AM. U.N,et al. Automation of pilot-scale open raceway pond: a case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production[J]. Journal of CO2 Utilization, 2019, 33: 384-393.
|
26 |
ROSA G, MORAISM G, COSTA J A V. Fed-batch cultivation with CO2 and monoethanolamine: influence on Chlorella fusca LEB 111 cultivation, carbon biofixation and biomolecules production[J]. Bioresource Technology, 2019, 273: 627-633.
|
27 |
SUN Z, ZHANG D, YAN C, et al. Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 730-738.
|
28 |
孙中亮. 低浓度二氧化碳培养微藻的吸收强化和烟道气组分调变[D]. 北京: 中国科学院研究生院(过程工程研究所), 2015.
|
|
SUN Zhongliang. Absorption enhancement of low-concentration CO2 in the production of microalgae and modification of flue gas[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2015.
|
29 |
苏发文,高鹏程,来琦芳,等. 铜绿微囊藻和小球藻对水环境pH的影响[J]. 中国水产科学, 2016, 23(6): 1380-1388.
|
|
SUN Fawen, GAO Pengcheng, LAI Qifang, et al. Effects of microcystis aeruginosa and Chlorella pyrenoidosa on water environment pH[J]. Journal of Fishery Sciences of China, 2016, 23(6): 1380-1388.
|
30 |
WANG Z, WEN X, XU Y, et al. Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG-1 via CO2-regulated pH in indoor and outdoor open reactors[J]. Science of the Total Environment, 2018, 619-620: 827-833.
|
31 |
SONG C, LIU J, XIE m, et al. Intensification of a novel absorption-microalgae hybrid CO2 utilization process via fed-batchmode optimization[J]. International Journal of Greenhouse Gas Control, 2019, 82: 1-7.
|
32 |
KIM G, CHOI W, LEE C, et al. Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents[J]. Biochemical Engineering Journal, 2013, 78: 18-23.
|
33 |
杨忠华, 陈明明, 曾嵘, 等. 利用微藻技术减排二氧化碳的研究进展[J]. 现代化工, 2008, 28(8): 15-19.
|
|
YANG Zhonghua, CHEN Mingming, ZENG Rong, et al. Recent progress in fixation of carbon dioxide by microalgae[J]. Modern Chemical Industry, 2008, 28(8): 15-19.
|
34 |
ROSA G, MORAES L, DE SOUZAM D R A, et al. Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production[J]. Bioresource Technology, 2016, 200: 528-534.
|
35 |
CHOI W, KIM G, LEE K. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp.[J]. Bioresource Technology, 2012, 120: 295-299.
|
36 |
王玮蔚, 孙雪, 王冬梅, 等. 盐度和无机碳对蛋白核小球藻生长、胞外碳酸酐酶活性及其基因表达的影响[J]. 水产学报, 2014, 38(7): 920-928.
|
|
WANG Weiwei, SUN Xue, WANG Dongmei, et al. Effects of salinity and inorganic carbon on the growth,extracellular carbonic anhydrase activity and ca gene expression of Chlorella pyrenoidosa[J].Journal of Fisheries of China, 2014, 38(7): 920-928.
|
37 |
ROSA G, MORAISM G, COSTA J A V. Green alga cultivation with monoethanolamine: evaluation of CO2 fixation and macromolecule production[J]. Bioresource Technology, 2018, 261: 206-212.
|
38 |
ROSA G, MORAES L, CARDIAS B B, et al. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle[J]. Bioresource Technology, 2015, 192: 321-327.
|
39 |
王兆印, 李一锋, 张旭, 等. 有机胺对螺旋藻生长及固碳效果的影响[J]. 高校化学工程学报, 2017, 31(2): 377-386.
|
|
WANG Zhaoyin, LI Yifeng, ZHANG Xu, et al. Effects of organic amine on spirulina growth and carbon fixation[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(2): 377-386.
|
40 |
潘孝妍, 陈长鸿, 王秀海, 等. 不同营养条件对微藻Ankistrodesmus sp.CJ09生长和油脂积累的影响[J].中国油脂, 2020, 45(3): 135-139.
|
|
PAN Xiaoyan, CHENG Changhong, WANG Xiuhai, et al. Effects of nutritional condition on the growth and lipid accumulation of microalgae Ankistrodesmus sp. CJ09[J]. China Oils and Fats, 2020, 45(3): 135-139.
|
41 |
NAYAK M, RATH S S, THIRUNAVOUKKARASU M, et al. Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide[J]. Journal of Microbiology and Biotechnology, 2013, 23(9): 1260-1268.
|
42 |
CARDIAS B B, MORAISM G D, COSTA J A V. CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition[J]. Bioresource Technology, 2018, 267: 77-83.
|
43 |
陈思铭, 张永春, 郭超, 等. 醇胺溶液吸收CO2的动力学研究进展[J]. 化工进展, 2014, 33(S1): 1-13.
|
|
CHEN Siming, ZHANG Rongchun, GUO Chao, et al. Reaction kinetics of absorption of carbon dioxide with alkanolamines[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 1-13.
|
44 |
FREDRIKSEN S B, JENS K. Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, PZ: a review[J]. Energy Procedia, 2013, 37: 1770-1777.
|
45 |
杨洁. 燃煤电厂CO2化学吸收及同微藻油提取工艺的耦合[D]. 上海: 华东理工大学, 2014.
|
|
YANG Jie. CO2 chemical absorption and its combination with fuel extraction from algae[D]. Shanghai: East China University of Science and Technology, 2014.
|
46 |
陆诗建. 醇胺溶液捕集烟道气中CO2实验研究[D]. 北京: 中国石油大学, 2010.
|
|
LU Shijian. Study on recovery of carbon dioxide from flue gas by amine solutions[D].Beijing: China University of Petroleum, 2010.
|