Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1449-1455.DOI: 10.16085/j.issn.1000-6613.2020-0872
• Industrial catalysis • Previous Articles Next Articles
CAO Zhengkai1,2(), ZHANG Xia2, DUAN Aijun1()
Received:
2020-05-20
Online:
2021-03-17
Published:
2021-03-05
Contact:
DUAN Aijun
通讯作者:
段爱军
作者简介:
曹正凯(1991—),男,博士研究生,研究方向为化学工程与技术。E-mail:基金资助:
CLC Number:
CAO Zhengkai, ZHANG Xia, DUAN Aijun. Synthesis of well ordered Al-FDU-12 mesoporous materials and their application in hydrogenation[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1449-1455.
曹正凯, 张霞, 段爱军. 有序介孔材料Al-FDU-12的合成及其加氢精制应用[J]. 化工进展, 2021, 40(3): 1449-1455.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0872
药品名称 | 化学式 | 等级 | 生产厂家 |
---|---|---|---|
四水合钼酸铵 | (NH4)6Mo7O24·4H2O | 分析纯 | 国药集团化学试剂公司 |
六水合硝酸镍 | Ni(NO3)2·6H2O | 分析纯 | 国药集团化学试剂公司 |
正硅酸乙酯(TEOS) | CH3CH2OSi(OCH2CH3)3 | 分析纯 | 国药集团化学试剂公司 |
正丁醇 | C4H9OH | 分析纯 | 国药集团化学试剂公司 |
盐酸 | HCl | 分析纯 | 北京化工厂 |
F127 | EO106PO70EO106 | 分析纯 | Sigma-Alogrich公司 |
异丙醇铝 | Al[(CH3)2CHO]3 | 分析纯 | 北京化学试剂公司 |
1,3,5-三甲苯 | C6H3(CH3)3 | 分析纯 | 天津市光复精细化工所 |
去离子水 | H2O | 北京手表厂 | |
石英砂 | SiO2 | 分析纯 | 天津石英钟厂 |
溴化钾 | KBr | 分析纯 | 北京益利精细化学品公司 |
药品名称 | 化学式 | 等级 | 生产厂家 |
---|---|---|---|
四水合钼酸铵 | (NH4)6Mo7O24·4H2O | 分析纯 | 国药集团化学试剂公司 |
六水合硝酸镍 | Ni(NO3)2·6H2O | 分析纯 | 国药集团化学试剂公司 |
正硅酸乙酯(TEOS) | CH3CH2OSi(OCH2CH3)3 | 分析纯 | 国药集团化学试剂公司 |
正丁醇 | C4H9OH | 分析纯 | 国药集团化学试剂公司 |
盐酸 | HCl | 分析纯 | 北京化工厂 |
F127 | EO106PO70EO106 | 分析纯 | Sigma-Alogrich公司 |
异丙醇铝 | Al[(CH3)2CHO]3 | 分析纯 | 北京化学试剂公司 |
1,3,5-三甲苯 | C6H3(CH3)3 | 分析纯 | 天津市光复精细化工所 |
去离子水 | H2O | 北京手表厂 | |
石英砂 | SiO2 | 分析纯 | 天津石英钟厂 |
溴化钾 | KBr | 分析纯 | 北京益利精细化学品公司 |
载体 | 孔径/nm | 孔容/cm3·g-1 | 比表面积/m2·g-1 |
---|---|---|---|
FDU-12 | 10.24 | 0.66 | 523 |
AF-50 | 10.14 | 0.71 | 620 |
AF-40 | 9.94 | 0.61 | 522 |
AF-30 | 9.28 | 0.55 | 507 |
AF-20 | 11.12 | 0.66 | 562 |
AF-10 | 9.18 | 0.56 | 510 |
载体 | 孔径/nm | 孔容/cm3·g-1 | 比表面积/m2·g-1 |
---|---|---|---|
FDU-12 | 10.24 | 0.66 | 523 |
AF-50 | 10.14 | 0.71 | 620 |
AF-40 | 9.94 | 0.61 | 522 |
AF-30 | 9.28 | 0.55 | 507 |
AF-20 | 11.12 | 0.66 | 562 |
AF-10 | 9.18 | 0.56 | 510 |
催化剂 | 硫含量 /mg·L-1 | 脱硫率 /% | 氮含量 /mg·L-1 | 脱氮率 /% |
---|---|---|---|---|
NiMo/AF-50 | 120 | 88.2 | 95 | 85.2 |
NiMo/AF-40 | 92 | 90.9 | 74 | 88.4 |
NiMo/AF-30 | 65 | 93.6 | 55 | 91.4 |
NiMo/AF-20 | 11 | 98.9 | 30 | 95.3 |
NiMo/AF-10 | 36 | 96.5 | 38 | 94.1 |
NiMo/FDU-12 | 145 | 85.7 | 118 | 81.6 |
工业催化剂 | 40 | 96.0 | 45 | 93.0 |
再生后NiMo/AF-20 | 13 | 98.7 | 33 | 94.8 |
催化剂 | 硫含量 /mg·L-1 | 脱硫率 /% | 氮含量 /mg·L-1 | 脱氮率 /% |
---|---|---|---|---|
NiMo/AF-50 | 120 | 88.2 | 95 | 85.2 |
NiMo/AF-40 | 92 | 90.9 | 74 | 88.4 |
NiMo/AF-30 | 65 | 93.6 | 55 | 91.4 |
NiMo/AF-20 | 11 | 98.9 | 30 | 95.3 |
NiMo/AF-10 | 36 | 96.5 | 38 | 94.1 |
NiMo/FDU-12 | 145 | 85.7 | 118 | 81.6 |
工业催化剂 | 40 | 96.0 | 45 | 93.0 |
再生后NiMo/AF-20 | 13 | 98.7 | 33 | 94.8 |
9 | 林粤顺, 周红军, 周新华, 等. 介孔SBA-16负载毒死蜱载药微球的制备及其表征[J]. 化工新型材料, 2016, 44(12): 144-146. |
LIN Yueshun, ZHOU Hongjun, ZHOU Xinhua, et al. Preparation and characterization of chlorpyrifos loaded mesoporous SBA-16 microspheres[J]. New Chemical Material, 2016, 44(12): 144-146. | |
10 | STEVENS W J J, LEBEAU K, MERTENS M, et al. Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials[J]. The Journal of Physical Chemistry B, 2006, 110(18): 9183-9187. |
11 | GOBIN O C, WAN Y, ZHAO D, et al. Mesostructured silica SBA-16 with tailored intrawall porosity Part 1: Synthesis and characterization[J]. The Journal of Physical Chemistry C, 2007, 111(7): 3053-3058. |
12 | WANG L, FAN J, TIAN B, et al. Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains[J]. Microporous and Mesoporous Materials, 2004, 67(2/3): 135-141. |
13 | KIM T W, RYOO R, KRUK M, et al. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time[J]. The Journal of Physical Chemistry B, 2004, 108(31): 11480-11489. |
14 | OLIVAS A, ZEPEDA T A. Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions[J]. Catalysis Today, 2009, 143(1/2): 120-125. |
15 | MOULI K C, MOHANTY S, HU Y, et al. Effect of hetero atom on dispersion of NiMo phase on M-SBA-15 (M=Zr, Ti, Ti-Zr) [J]. Catalysis Today, 2013, 207: 133-144. |
16 | GUZMÁN M A, HUIRACHE-ACUÑA R, LORICERA C V, et al. Removal of refractory S-containing compounds from liquid fuels over P-loaded NiMoW/SBA-16 sulfide catalysts[J]. Fuel, 2013, 103: 321-333. |
17 | CALDERÓN-MAGDALENO M Á, MENDOZA-NIETO J A, KLIMOVA T E. Effect of the amount of citric acid used in the preparation of NiMo/SBA-15 catalysts on their performance in HDS of dibenzothiophene-type compounds[J]. Catalysis Today, 2014, 220: 78-88. |
18 | AMEZCUA J C, LIZAMA L, SALCEDO C, et al. NiMo catalysts supported on titania-modified SBA-16 for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Catalysis Today, 2005, 107: 578-588. |
19 | HAO Y, CHONG Y, LI S, et al. Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols[J]. The Journal of Physical Chemistry C, 2012, 116(11): 6512-6519. |
20 | SHEN W, GU Y, XU H, et al. Alkylation of isobutane/1-butene on methyl-modified nafion/SBA-16 materials[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7201-7209. |
21 | MA J, QIANG L, WANG J, et al. An easy route to synthesize novel mesostructured silicas Al/SBA-16 and its catalytic application[J]. Catalysis Letters, 2011, 141(2): 356-363. |
22 | ZHANG S, MURATSUGU S, ISHIGURO N, et al. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catalysis, 2013, 3(8): 1855-1864. |
23 | KRUK M, HUI C M. Synthesis and characterization of large-pore FDU-12 silica[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 64-73. |
24 | FAN J, YU C, GAO F, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties[J]. Angewandte Chemie: International Edition, 2003, 42(27): 3146-3150. |
25 | KUMAR A, SRINIVAS D. Aminolysis of epoxides catalyzed by three-dimensional, mesoporous titanosilicates, Ti-SBA-12 and Ti-SBA-16[J]. Journal of Catalysis, 2012, 293: 126-140. |
26 | YU J, JIMMY C Y, ZHAO X. The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films[J]. Journal of Sol-Gel Science and Technology, 2002, 24(2): 95-103. |
27 | ZHAO L, YU J. Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template[J]. Journal of Colloid and Interface Science, 2006, 304(1): 84-91. |
1 | CHEN Y, HSU W, LIN C, et al. Hydrodesulfurization reactions of residual oils over cobalt-molybdenum/alumina-aluminum phosphate catalysts in a trickle bed reactor[J]. Industrial & Engineering Chemistry Research, 1990, 29(9): 1830-1840. |
2 | DONGEN R VAN, BODE D, EIJK H VAN DER, et al. Hydrodemetallization of heavy residual oils in laboratory trickle-flow liquid recycle reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(4): 630-635. |
3 | SONI K, RANA B S, SINHA A K, et al. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 55-63. |
4 | GAO D, DUAN A, ZHANG X, et al. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS[J]. Applied Catalysis B: Environmental, 2015, 165: 269-284. |
5 | HUIRACHE-ACUÑA R, PAWELEC B, RIVERA-MUÑOZ E, et al. Comparison of the morphology and HDS activity of ternary Co-Mo-W catalysts supported on P-modified SBA-15 and SBA-16 substrates[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 168-184. |
6 | ZHAO D, HUO Q, FENG J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036. |
7 | GALARNEAU A, CAMBON H, DI RENZO F, et al. True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature[J]. Langmuir, 2001, 17(26): 8328-8335. |
8 | 金政伟, 汪晓东, 崔秀国. 弱酸性条件下SBA-16型二氧化硅介孔材料的合成与表征[J]. 化工学报, 2006, 57(6): 1487-1489. |
JING Zhengwei, WANG Xiaodong, CUI Xiuguo. Synthesis and characterization of SBA-16-type mesoporous silica under a moderately acidic condition[J]. CIESC Journal, 2006, 57(6):1487-1489. | |
28 | CAO Z, ZHANG X, XU C, et al. The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC Diesel[J]. Energy & Fuels, 2017, 31(1):805-814. |
29 | MENG Q, DU P, WANG B, et al. Synthesis of zirconium modified FDU-12 by different methods and its application in dibenzothiophene hydrodesulfurization[J]. RSC Advances, 2018, 8(48): 27565-27573. |
30 | LIU C, YUAN P, CUI C. The pore confinement effect of FDU-12 mesochannels on MoS2 active phases and their hydrodesulfurization performance[J]. Journal of Nanomaterials, 2016, 9: 1-10. |
31 | CAO Z, DUAN A, ZHAO Z, et al. A simple two-step method to synthesize the well-ordered mesoporous composite Ti-FDU-12 and its application in the hydrodesulfurization of DBT and 4,6-DMDBT[J]. Journal of Materials Chemistry A, 2014, 2(46): 19738-19749. |
32 | WU Q, LI Y, HOU Z, et al. Synthesis and characterization of beta-FDU-12 and the hydrodesulfurization performance of FCC gasoline and diesel[J]. Fuel Processing Technology, 2018, 172: 55-64. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |