Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 932-948.DOI: 10.16085/j.issn.1000-6613.2020-0612
• Materials science and technology • Previous Articles Next Articles
Zhenwei WU(), Wei LI, Lei E, Jiaming SUN, Yushan LIU, Shouxin LIU()
Received:
2020-04-20
Revised:
2020-06-13
Online:
2021-02-09
Published:
2021-02-05
Contact:
Shouxin LIU
吴振威(), 李伟, 鄂雷, 孙佳明, 刘禹衫, 刘守新()
通讯作者:
刘守新
作者简介:
吴振威(1996—),男,博士研究生,研究方向水热软模板法制备有序介孔炭球。E-mail:基金资助:
CLC Number:
Zhenwei WU, Wei LI, Lei E, Jiaming SUN, Yushan LIU, Shouxin LIU. Preparation and applications of mesoporous carbon spheres via combination of hydrothermal and soft-templating[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 932-948.
吴振威, 李伟, 鄂雷, 孙佳明, 刘禹衫, 刘守新. 水热-软模板法制备介孔炭球及其应用[J]. 化工进展, 2021, 40(2): 932-948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0612
碳源 | 模板 | 催化剂 | 水热温度 /℃ | 水热时间 /h | 形貌 | 改性 | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
间苯二酚和甲醛 | F127 | HCl | 150 | 10 | 实心 | Se | 锂电池 | [ |
间苯二酚和甲醛 | F127、FC4 | HCl | 100 | 24 | 实心 | N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | HCl | 120 | 12 | 实心 | Fe、N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | NaOH | 180 | 4 | 实心 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | N | 直接甲醇燃料电池 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 80 | 24 | 中空 | — | 超级电容器 | [ |
酚醛树脂 | F127 | NaOH | 130 | 10 | 实心 | Fe3O4 | 锂电池 | [ |
酚醛树脂 | F127 | NaOH | 130 | 24 | 实心 | — | 细胞透性 | [ |
三聚氰胺、间苯二酚和甲醛 | F127 | NaOH | 180 | 7 | 实心 | N、石墨烯 | 超级电容器 | [ |
三聚氰胺、间苯二酚和甲醛 | CTAC | NH4OH | 100 | 24 | 壳核 | N | 超级电容器 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸 | NH4OH | 100~160 | 4 | 中空 | Fe、Ag | 催化 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸钠 | NH4OH | 140 | 4 | 壳核 | Cu | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 2 | 中空 | Pt、Co | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 5 | 壳核 | Pd | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | Fe、N | 氧还原反应 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | N、石墨烯 | 氧还原反应 | [ |
葡萄糖 | SDS | — | 250 | 5 | 中空 | Ni | 析氢反应 | [ |
D-果糖 | F127 | — | 130 | 24 | 实心 | — | 超级电容器 | [ |
α-环糊精 | F127 | — | 200 | 6 | 壳核 | — | 锂电池 | [ |
碳源 | 模板 | 催化剂 | 水热温度 /℃ | 水热时间 /h | 形貌 | 改性 | 应用 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
间苯二酚和甲醛 | F127 | HCl | 150 | 10 | 实心 | Se | 锂电池 | [ |
间苯二酚和甲醛 | F127、FC4 | HCl | 100 | 24 | 实心 | N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | HCl | 120 | 12 | 实心 | Fe、N | 氧还原反应 | [ |
间苯二酚和甲醛 | F127 | NaOH | 180 | 4 | 实心 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | N | 直接甲醇燃料电池 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 100 | 24 | 壳核 | — | 超级电容器 | [ |
间苯二酚和甲醛 | CTAB | NH4OH | 80 | 24 | 中空 | — | 超级电容器 | [ |
酚醛树脂 | F127 | NaOH | 130 | 10 | 实心 | Fe3O4 | 锂电池 | [ |
酚醛树脂 | F127 | NaOH | 130 | 24 | 实心 | — | 细胞透性 | [ |
三聚氰胺、间苯二酚和甲醛 | F127 | NaOH | 180 | 7 | 实心 | N、石墨烯 | 超级电容器 | [ |
三聚氰胺、间苯二酚和甲醛 | CTAC | NH4OH | 100 | 24 | 壳核 | N | 超级电容器 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸 | NH4OH | 100~160 | 4 | 中空 | Fe、Ag | 催化 | [ |
2,4-二羟基苯甲酸和甲醛 | 油酸钠 | NH4OH | 140 | 4 | 壳核 | Cu | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 2 | 中空 | Pt、Co | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 5 | 壳核 | Pd | 催化 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | Fe、N | 氧还原反应 | [ |
2,4-二羟基苯甲酸和环六亚甲基四氨 | P123和油酸钠 | NH4+ | 160 | 8 | 中空 | N、石墨烯 | 氧还原反应 | [ |
葡萄糖 | SDS | — | 250 | 5 | 中空 | Ni | 析氢反应 | [ |
D-果糖 | F127 | — | 130 | 24 | 实心 | — | 超级电容器 | [ |
α-环糊精 | F127 | — | 200 | 6 | 壳核 | — | 锂电池 | [ |
102 | PRIETO G, TÜYSÜZ H, DUYCKAERTS N, et al. Hollow nano- and microstructures as catalysts[J]. Chemical Reviews, 2016, 116(22): 14056-14119. |
103 | 赵东江, 马松艳, 田喜强, 等. 掺杂有序介孔炭氧还原电催化剂的研究进展[J]. 炭素技术, 2018, 37(2): 1-7. |
ZHAO Dongjiang, MA Songyan, TIAN Xiqiang, et al. Recent progress in doped ordered mesoporous carbons as electrocatalysts for oxygen reduction[J]. Carbon Techniques, 2018, 37(2): 1-7. | |
104 | FANG Yin, ZHENG Gengfeng, YANG Jianping, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angewandte Chemie: International Edition, 2014, 53(21): 5366-5370. |
105 | VINU A, HOSSIAN K Z, SRINIVASU P, et al. Carboxy-mesoporous carbon and its excellent adsorption capability for proteins[J]. Journal of Materials Chemistry, 2007, 17(18): 1819-1825. |
106 | LI Chengyi, MENG Ying, WANG Shanshan, et al. Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo[J]. ACS Nano, 2015, 9(12): 12096-12103. |
107 | ZHANG Amin, PAN Shaojun, ZHANG Yuhui, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy[J]. Theranostics, 2019, 9(12): 3443-3458. |
108 | WANG Huan, LI Xiangui, MA Zhiqiang, et al. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy[J]. International Journal of Nanomedicine, 2016, 11: 1793-1806. |
1 | 李鹏刚, 王靖轩, 郭飞飞, 等. 介孔碳的研究进展及应用[J]. 化工进展, 2018, 37(1): 149-158. |
LI Penggang, WANG Jingxuan, GUO Feifei, et al. Recent progress in the synthesis and applications of mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 149-158. | |
109 | Ji Hoon LEE, Hyeon Jeong LEE, Soo Yeon LIM, et al. Combined CO2-philicity and ordered mesoporosity for highly selective CO2 capture at high temperatures[J]. Journal of the American Chemical Society, 2015, 137(22): 7210-7216. |
2 | 吴冰峰, 杨丽娜, 李剑, 等. 生物质模板剂制备介孔材料研究进展[J]. 化工进展, 2018, 37(7): 2686-2693. |
WU Bingfeng, YANG Lina, LI Jian, et al. Application of biomass templates in the preparation of mesoporous materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2686-2693. | |
3 | XIN Wang, SONG Yonghui. Mesoporous carbons: recent advances in synthesis and typical applications[J]. RSC Advances, 2015, 5(101): 83239-83285. |
4 | 何天稀, 王文斌, 王九, 等. 介孔碳球的制备及作为药物传输系统的应用[J]. 化学进展, 2020, 32(2/3): 309-319. |
HE Tianxi, WANG Wenbin, WANG Jiu, et al. Mesoporous carbon spheres: synthesis and applications in drug delivery system[J]. Progress in Chemistry, 2020, 32(2/3): 309-319. | |
5 | WICKRAMARATNE N P, XU Jiantie, WANG Min, et al. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption[J]. Chemistry of Materials, 2014, 26(9): 2820-2828. |
6 | FU Tingjun, WANG Xia, ZHENG Huayan, et al. Effect of Cu location and dispersion on carbon sphere supported Cu catalysts for oxidative carbonylation of methanol to dimethyl carbonate[J]. Carbon, 2017, 115: 363-374. |
7 | ZHANG Xiue, ZHAO Rongfang, WU Qianhui, et al. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance[J]. ACS Nano, 2017, 11(8): 8429-8436. |
8 | MA Xiaomei, GAN Lihua, LIU Mingxian, et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(22): 8407-8415. |
9 | LIU Tao, ZHANG Liuyang, YOU Wei, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor[J]. Small, 2018, 14(12): 1702407. |
10 | LU Shiyao, ZHU Tianxiang, WU Hu, et al. Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage[J]. Nano Energy, 2019, 59: 762-772. |
11 | JIA Baorui, QIN Mingli, ZHANG Zili, et al. One-pot synthesis of Cu-carbon hybrid hollow spheres[J]. Carbon, 2013, 62: 472-480. |
12 | LI Sijin, PASC A, FIERRO V, et al. Hollow carbon spheres, synthesis and applications-a review[J]. Journal of Materials Chemistry A, 2016, 4(33): 12686-12713. |
13 | QU Yaohui, ZHANG Zhian, WANG Xiwen, et al. A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(45): 14306-14310. |
14 | MA Tianyi, LIU Lei, YUAN Zhongyong. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003. |
15 | YANG Zhengchun, TANG Chunhua, GONG Hao, et al. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application[J]. Journal of Power Sources, 2013, 240: 713-720. |
16 | HU Bo, WANG Kan, WU Liheng, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 2010, 22(7): 813-828. |
17 | HUANG Yan, CAI Huaqiang, FENG Dan, et al. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chemical Communications, 2008, 23: 2641-2643. |
18 | LIU Lei, WANG Fengyun, SHAO Gaosong, et al. A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure[J]. Carbon, 2010, 48(7): 2089-2099. |
19 | ZHANG Pengfei, QIAO Zhen’an, DAI Sheng. Recent advances in carbon nanospheres: synthetic routes and applications[J]. Chemical Communications, 2015, 51(45): 9246-9256. |
20 | LUO Chao, XU Yunhua, ZHU Yujie, et al. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity[J]. ACS Nano, 2013, 7(9): 8003-8010. |
21 | BAYATSARMADI B, ZHENG Yao, JARONIEC M, et al. Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction[J]. Chemistry: an Asian Journal, 2015, 10(7): 1546-1553. |
22 | WEI Jing, LIANG Yan, ZHANG Xinyi, et al. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts[J]. Nanoscale, 2015, 7(14): 6247-6254. |
23 | LI Meng, XUE Junmin. Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route[J]. Journal of Colloid and Interface Science, 2012, 377(1): 169-175. |
24 | SHU Chengyong, SONG Bo, WEI Xuedong, et al. Mesoporous 3D nitrogen-doped yolk-shelled carbon spheres for direct methanol fuel cells with polymer fiber membranes[J]. Carbon, 2018, 129: 613-620. |
25 | WANG Jinxiu, FENG Shanshan, SONG Yanfang, et al. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors[J]. Catalysis Today, 2015, 243: 199-208. |
26 | HOU Jianhua, CAO Tai, IDREES F, et al. A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells[J]. Nanoscale, 2016, 8(1): 451-457. |
27 | CHEN Yu, SONG Bohang, LI Meng, et al. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high- rate battery applications[J]. Advanced Functional Materials, 2014, 24(3): 319-326. |
28 | FANG Yin, GU Dong, ZOU Ying, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie: International Edition, 2010, 49(43): 7987-7991. |
29 | LI Meng, XUE Junmin. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2507-2517. |
30 | LIU Chao, WANG Jing, LI Jiansheng, et al. Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7194-7204. |
31 | WANG Guanghui, SUN Qiang, ZHANG Rong, et al. Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chemistry of Materials, 2011, 23(20): 4537-4542. |
32 | HAO Panpan, REN Jun, YANG Leilei, et al. Direct and generalized synthesis of carbon-based yolk-shell nanocomposites from metal-oleate precursor[J]. Chemical Engineering Journal, 2016, 283: 1295-1304. |
33 | WANG Guanghui, HILGERT J, RICHTER F H, et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural[J]. Nature Materials, 2014, 13(3): 293-300. |
34 | WANG Guanghui, CHEN Kun, ENGELHARDT J, et al. Scalable one-pot synthesis of yolk-shell carbon nanospheres with yolk-supported Pd nanoparticles for size-selective catalysis[J]. Chemistry of Materials, 2018, 30(8): 2483-2487. |
35 | ZHOU Tingsheng, ZHOU Yao, MA Ruguang, et al. Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron-nitrogen-doped graphitic carbon spheres[J]. Journal of Materials Chemistry A, 2017, 5(24): 12243-12251. |
36 | MA Ruguang, XING Ruohao, LIN Gaoxin, et al. Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction[J]. Materials Chemistry Frontiers, 2018, 2(8): 1489-1497. |
37 | CHATTOPADHYAY J, PATHAK T S, SRIVASTAVA R, et al. Ni nano-particle encapsulated in hollow carbon sphere electrocatalyst in polymer electrolyte membrane water electrolyzer[J]. Electrochimica Acta, 2015, 167: 429-438. |
38 | LIU Huajun, ZHANG Yu, KE Qingqing, et al. Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature[J]. Journal of Materials Chemistry A, 2013, 1(41): 12962-12970. |
39 | YANG Zhengchun, ZHANG Yu, KONG Junhua, et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of alpha-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials, 2013, 25(5): 704-710. |
40 | LIU Jian, QIAO Shizhang, LIU Hao, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie: International Edition, 2011, 50(26): 5947-5951. |
41 | YANG Tianyu, LIU Jian, ZHOU Ruifeng, et al. N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts[J]. Journal of Materials Chemistry A, 2014, 2(42): 18139-18146. |
42 | WANG Guanghui, CAO Zhengwen, GU Dong, et al. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angewandte Chemie: International Edition, 2016, 55(31): 8850-8855. |
43 | LIU Dan, LEI Jiaheng, GUO Liping, et al. Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine[J]. Carbon, 2011, 49(6): 2113-2119. |
44 | KIM Jung Ho, BHATTACHARJYA D, YU Jong-Sung. Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine[J]. Journal of Materials Chemistry A, 2014, 2(29): 11472-11479. |
45 | 宋曜光, 刘军利, 许伟, 等. 模板法制备木质素基中孔炭材料研究进展[J]. 生物质化学工程, 2018, 52(1): 60-68. |
SONG Yaoguang, LIU Junli, XU Wei, et al. Research progress on synthesis of lignin-derived mesoporous carbon materials via template strategy[J]. Biomass Chemical Engineering, 2018, 52(1): 60-68. | |
46 | ZHAO Xin, CHEN Honglei, KONG Fangong, et al. Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review[J]. Chemical Engineering Journal, 2019, 364: 226-243. |
47 | ZHAO Xin, LI Wei, LIU Shouxin. Coupled soft-template/hydrothermal process synthesis of mesoporous carbon spheres from liquefied larch sawdust[J]. Materials Letters, 2013, 107: 5-8. |
48 | ZHAO Xin, LI Wei, ZHANG Shuangshuang, et al. Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr(Ⅲ) and Pb(Ⅱ)[J]. Materials Chemistry and Physics, 2015, 155: 52-58. |
49 | WU Qiong, LI Wei, TAN Jia, et al. Flexible cage-like carbon spheres with ordered mesoporous structures prepared via a soft-template/hydrothermal process from carboxymethylcellulose[J]. RSC Advances, 2014, 4(106): 61518-61524. |
50 | WU Qiong, LI Wei, WU Yanjiao, et al. Effect of reaction time on structure of ordered mesoporous carbon microspheres prepared from carboxymethyl cellulose by soft-template method[J]. Industrial Crops and Products, 2015, 76: 866-872. |
51 | WEN Zhenhai, WANG Qiang, ZHANG Qian, et al. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells[J]. Electrochemistry Communications, 2007, 9(8): 1867-1872. |
52 | WANG Shiping, LIU Ruihan, HAN Chuanlong, et al. A novel strategy to synthesize hierarchical, porous carbohydrate-derived carbon with tunable properties[J]. Nanoscale, 2014, 6(22): 13510-13517. |
53 | WU Mingbo, AI Peipei, TAN Minghui, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chemical Engineering Journal, 2014, 245: 166-172. |
54 | WANG Shiping, HAN Chuanlong, WANG Jing, et al. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation[J]. Chemistry of Materials, 2014, 26(23): 6872-6877. |
55 | WANG Xiaojing, FENG Ji, BAI Yaocai, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Reviews, 2016, 116(18): 10983-11060. |
56 | LOU Xiongwen, ARCHER L A, YANG Zichao. Hollow micro-/nanostructures: synthesis and applications[J]. Advanced Materials, 2008, 20(21): 3987-4019. |
57 | MASON T G, WILKING J N, MELESON K, et al. Nanoemulsions: formation, structure, and physical properties[J]. Journal of Physics: Condensed Matter, 2006, 18(41): R635-R666. |
58 | WEI Jing, SUN Zhenkun, LUO Wei, et al. New insight into the synthesis of large-pore ordered mesoporous materials[J]. Journal of the American Chemical Society, 2017, 139(5): 1706-1713. |
59 | LIANG Chengdu, DAI Sheng. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. Journal of the American Chemical Society, 2006, 128(16): 5316-5317. |
60 | LI Zhen, YUAN Lixia, YI Ziqi, et al. Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries[J]. Nano Energy, 2014, 9: 229-236. |
61 | CHEN Chunhong, WANG Haiyan, HAN Chuanlong, et al. Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass[J]. Journal of the American Chemical Society, 2017, 139(7): 2657-2663. |
62 | LIANG Zhongguan, LIU Hao, ZENG Jianping, et al. Facile synthesis of nitrogen-doped microporous carbon spheres for high performance symmetric supercapacitors[J]. Nanoscale Research Letters, 2018, 13(1): 314. |
63 | LIBBRECHT W, VERBERCKMOES A, THYBAUT J W, et al. Soft templated mesoporous carbons: tuning the porosity for the adsorption of large organic pollutants[J]. Carbon, 2017, 116: 528-546. |
64 | MENG Yan, GU Dong, ZHANG Fuqiang, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie: International Edition, 2005, 44(43): 7053-7059. |
65 | ZHANG Fuqiang, MENG Yan, GU Dong, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. Journal of the American Chemical Society, 2005, 127(39): 13508-13509. |
66 | XU Fan, CHEN Yiqing, TANG Minghui, et al. Acid induced self-assembly strategy to synthesize ordered mesoporous carbons from biomass[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4473-4479. |
67 | CHEN Aibing, YU Yifeng, ZHANG Yue, et al. Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases[J]. Carbon, 2014, 80: 19-27. |
68 | GUAN Buyuan, ZHANG Songlin, LOU Xiongwen. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction[J]. Angewandte Chemie: International Edition, 2018, 57(21): 6176-6180. |
69 | XU Xingtao, ALLAH A E, WANG Chen, et al. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination[J]. Chemical Engineering Journal, 2019, 362: 887-896. |
70 | GANGULY R, ASWAL V, HASSAN P, et al. Effect of SDS on the self-assembly behavior of the PEO-PPO-PEO triblock copolymer (EO)20(PO)70(EO)20[J]. Journal of Physical Chemistry B, 2006, 110(20): 9843-9849. |
71 | LIU Xin, SONG Pingping, HOU Jiahui, et al. Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2797-2805. |
72 | ZHOU Tingsheng, ZHOU Yao, MA Ruguang, et al. In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts[J]. Nanoscale, 2016, 8(42): 18134-18142. |
73 | GUAN Buyuan, YU Le, LOU Xiongwen. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly[J]. Journal of the American Chemical Society, 2016, 138(35): 11306-11311. |
74 | LIU Jian, YANG Tianyu, WANG Dawei, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4(1): 1-7. |
75 | ALLAH A E, TAN Haibo, XU Xingtao, et al. Controlled synthesis of mesoporous nitrogen-doped carbons with highly ordered two-dimensional hexagonal mesostructures and their chemical activation[J]. Nanoscale, 2018, 10(26): 12398-12406. |
76 | XIE Lei, WANG Zhe, LIU Jinrong, et al. Kinetics-controlled synthesis of hierarchically porous materials with tunable properties from diverse building blocks[J]. Carbon, 2019, 155: 611-617. |
77 | WANG Jiangan, LIU Hongzhen, SUN Huanhuan, et al. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors[J]. Carbon, 2018, 127: 85-92. |
78 | SUN Qiang, ZHANG Xiangqian, HAN Fei, et al. Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(33): 17049-17054. |
79 | KAN Xun, CHEN Xiaoping, CHEN Wei, et al. Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H2S[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7609-7618. |
80 | ZHOU Tingsheng, ZHOU Yao, MA Ruguang, et al. Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction[J]. Carbon, 2017, 114: 177-186. |
81 | LI Yunqi, TAN Haibo, SALUNKHE R R, et al. Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent[J]. Chemical Communications, 2017, 53(1): 236-239. |
82 | TIAN Hao, LIN Zhixing, XU Fugui, et al. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution[J]. Small, 2016, 12(23): 3155-3163. |
83 | LIU Chao, YU Meihua, LI Yang, et al. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes[J]. Nanoscale, 2015, 7(27): 11580-11590. |
84 | PENG Liang, HUNG Chin-Te, WANG Shuwen, et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures[J]. Journal of the American Chemical Society, 2019, 141(17): 7073-7080. |
85 | DU Juan, LIU Lei, HU Zepeng, et al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy[J]. Advanced Functional Materials, 2018, 28(33): 1802332. |
86 | ZHANG Zhongzheng, SUN Nannan, WEI Wei. Facile and controllable synthesis of ordered mesoporous carbons with tunable single-crystal morphology for CO2 capture[J]. Carbon, 2020, 161: 629-638. |
87 | 杨媛媛, 曾丹林. 新型介孔碳的制备、功能化及应用研究进展[J]. 应用化工, 2019, 48(4): 897-901. |
YANG Yuanyuan, ZENG Danlin. Preparation, functionalization and application of novel mesoporous carbon materials[J]. Applied Chemical Industry, 2019, 48(4): 897-901. | |
88 | BENZIGAR M R, TALAPANENI S N, JOSEPH S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721. |
89 | XING Ruohao, ZHOU Tingsheng, ZHOU Yao, et al. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction[J]. Nano-Micro Letters, 2018, 10(1): 3. |
90 | LI Jinlei, LI Zelong, TONG Jinhui, et al. Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction[J]. RSC Advances, 2015, 5(86): 70010-70016. |
91 | QIN Meichun, FAN Shiying, WANG Liang, et al. Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2[J]. Journal of Colloid and Interface Science, 2020, 562: 540-549. |
92 | ZHANG Fei, LIU Xiaoyan, YANG Menghua, et al. Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes[J]. Nano Energy, 2020, 69: 104443. |
93 | SUN Qiang, GUO ChunzZao, WANG Guanghui, et al. Fabrication of magnetic yolk-shell nanocatalysts with spatially resolved functionalities and high activity for nitrobenzene hydrogenation[J]. Chemistry: a European Journal, 2013, 19(20): 6217-6220. |
94 | BIAN Xiaojun, ZHU Jie, LIAO Lei, et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution[J]. Electrochemistry Communications, 2012, 22: 128-132. |
95 | PIAO Yuanzhe, JANG Youngjin, SHOKOUHIMEHR M, et al. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes[J]. Small, 2007, 3(2): 255-260. |
96 | LIU Jian, WICKRAMARATNE N P, QIAO Shizhang, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials, 2015, 14(8): 763-774. |
97 | CHANG Peiyi, BINDUMADHAVAN K, DOONG Ruey-An. Size effect of ordered mesoporous carbon nanospheres for anodes in Li-ion battery[J]. Nanomaterials, 2015, 5(4): 2348-2358. |
98 | YE Huan, YIN Yaxia, XIN Sen, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6602-6608. |
99 | WU Ruofei, SHEN Shuiyun, XIA Guofeng, et al. Soft-templated self-assembly of mesoporous anatase TiO2/carbon composite nanospheres for high-performance lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 19968-19978. |
100 | XU Ming, YU Qiang, LIU Zhenhui, et al. Tailoring porous carbon spheres for supercapacitors[J]. Nanoscale, 2018. 10(46): 21604-21616. |
101 | LIN Junsheng, YAO Lei, LI Zheling, et al. Hybrid hollow spheres of carbon@CoxNi1-xMoO4 as advanced electrodes for high-performance asymmetric supercapacitors[J]. Nanoscale, 2019, 11(7): 3281-3291. |
[1] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[2] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[3] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[4] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[5] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[6] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[7] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[8] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[9] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[10] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[11] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[12] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[13] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[14] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[15] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |