Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 206-215.DOI: 10.16085/j.issn.1000-6613.2019-0705
• Materials science and technology • Previous Articles Next Articles
Pengfei YANG1,2(),Jiexin LI1,Chunxia ZHU1
Received:
2019-05-04
Online:
2020-01-14
Published:
2020-01-05
Contact:
Pengfei YANG
通讯作者:
阳鹏飞
作者简介:
阳鹏飞(1978—),男,副教授,硕士生导师,研究方向为功能材料的制备与应用。E-mail:基金资助:
CLC Number:
Pengfei YANG,Jiexin LI,Chunxia ZHU. Research progress in treating uranium containing wastewater with magnetic materials[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 206-215.
阳鹏飞,黎杰鑫,朱春霞. 磁性纳米材料处理含铀废水的研究进展[J]. 化工进展, 2020, 39(1): 206-215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0705
11 | SHEN Y , ZHANG Y , ZHANG X , et al . Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species[J]. Nanoscale, 2015, 7(7): 2941-2950. |
12 | WANG Z , XU J , HU Y ,et al . Functional nanomaterials: study on aqueous Hg(Ⅱ) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 394-402. |
13 | LI L , HUANG F , YUAN Y , et al . Preparation and sorption performance of magnetic 18-crown-6/Fe3O4, nanocomposite for uranium(Ⅵ) in solution[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(1): 227-235. |
14 | 赵东媛 . 磁性核壳纳米材料的可控制备及其净水性能的研究[D]. 石家庄: 河北师范大学, 2013. |
ZHAO D Y . Controllable synthesis of magnetic core-shell nanocomposites and their performance for water purification[D]. Shijiazhuang: Hebei Normal University, 2013. | |
15 | YIN L , SONG S , WANG X , et al . Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(Ⅵ) adsorption performance[J]. Environmental Pollution, 2018, 238: 725-738. |
16 | OUYANG Y , PENG Y , LI J , et al . Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems[J]. Metallomics Integrated Biometal Science, 2018, 10(2): 218-228. |
17 | GAO F , ZHANG W , GUO Y , et al . Removal of U(Ⅵ) in aqueous solution by a compound of hydroxyapatite and nanoscale zero-valent iron[J]. China Ceramics, 2015, 51(8): 10-15. |
1 | ZHANG M . Nanometer material for deacidification for documents of the Republic of China Era[J]. Journal of Academic Libraries, 2018(3): 88-93, 128. |
2 | METELKINA O N , LODGE R W , RUDAKOVSKAYA P G , et al . Nanoscale engineering of hybrid magnetite-carbon nanofibre materials for magnetic resonance imaging contrast agents[J]. Journal of Materials Chemistry C, 2017, 5(8): 2167-2174. |
18 | POPESCU (Hoştuc) I-C, FILIP P , HUMELNICU D , et al . Removal of uranium (Ⅵ) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose[J]. Journal of Nuclear Materials, 2013, 443(1/2/3): 250-255. |
19 | LI X , MING Z , LIU Y B , et al . Removal of U(Ⅵ) in aqueous solution by nanoscale zero-valent iron(nZVI)[J]. Water Quality Exposure & Health, 2013, 5(1): 31-40. |
20 | SUN Y , DING C , CHENG W , et al . Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. |
3 | SUN Y , LU G M , TANG Z X . Preparation of magnetic nanometer Fe3O4@MOF-5 and its adsorption performance for Congo red[J]. Liaoning Chemical Industry, 2017(11): 1052-1054, 1071. |
4 | LI J , ZHOU Q , LIU Y , et al . Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene[J]. Science & Technology of Advanced Materials, 2017, 18(1): 3-16. |
21 | 张纯, 张伟, 周星火 .零价铁粉在含U(Ⅵ)废水处理中的应用研究[J].铀矿冶, 2009, 28(3): 155-157. |
ZHANG Chun , ZHANG Wei , ZHOU Xinghuo . Study on application of zero-valent iron powder in U(Ⅵ) wastewater treatment[J].Uranium Mining and Metallurgy, 2009, 28(3): 155-157. | |
22 | LING L , ZHANG W X . Enrichment and encapsulation of uranium with iron nanoparticle[J]. Journal of the American Chemical Society, 2015, 137(8): 2788. |
23 | SHENG G , SHAO X , LI Y , et al . Enhanced removal of uranium(Ⅵ) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism[J]. Journal of Physical Chemistry A, 2014, 118(16): 2952-2958. |
24 | HU B , YE F , REN X , et al . X-ray absorption fine structure study of enhanced sequestration of U(Ⅵ) and Se(Ⅵ) by montmorillonite decorated with zero-valent iron nanoparticles[J]. Environmental Science: Nano, 2016, 3(6): 1460-1472. |
25 | LIU M , WANG Y , CHEN L , et al . Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(Ⅱ) from aqueous solution[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 7961-7969. |
26 | LIU Q , BEI Y L , FENG Z . Removal of lead(Ⅱ) from aqueous solution with amino-functionalized nanoscale zero-valent iron[J]. Central European Journal of Chemistry, 2009, 7(1): 79-82. |
27 | SUN Y , DING C , CHENG W , et al . Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. |
28 | LIU J , DAI C , HU Y . Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: effects of pH, cations, anions, and humic acid[J]. Environmental Research, 2018,161: 49-60. |
29 | MA Z , SHAN C , LIANG J , et al . Efficient adsorption of selenium(Ⅵ) from water by hematite modified magnetic nanoparticles[J]. Chemosphere, 2018, 193: 134-141. |
30 | MINITHA C R , ARACHY M M S . Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites[J]. Separation Science & Technology, 2018, 53(14): 2159-2169. |
31 | 周智慧, 李乐, 张宗波, 等 .复合磁性纳米材料的制备及其吸附铀的性能研究[J].应用化工, 2016, 45(2): 198-202. |
ZHOU Zhihui , LI Le , ZHANG Zongbo , et al . Syntheses of magnetic nanocomposite and its adsorption of uranyl ions[J]. Applied Chemical Industry, 2016, 45(2): 198-202. | |
32 | DING C , CHENG W , SUN Y , et al . Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J]. Journal of Hazardous Materials, 2015, 295: 127-137. |
33 | 廖琪, 李乐, 袁亚莉, 等 .功能化磁性纳米粒子制备及其铀吸附性能研究[J]. 应用化工, 2018, 47(7): 1336-1338, 1341. |
LIAO Qi , LI Le , YUAN Yali , et al . Preparation and adsorption performance of functionalized nano-Fe3O4 for uranyl ions from aqueous solution[J]. Applied Chemical Industry, 2018, 47(7): 1336-1338, 1341. | |
34 | LI L , HU N , DING D , et al . Adsorption and recovery of U(Ⅵ) from low concentration uranium solution by amidoxime modified Aspergillus niger [J]. RSC Advances, 2015, 5(81): 65827-65939. |
35 | CHEN Z , JIAN W , PU Z , et al . Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(Ⅵ) from wastewater[J]. Chemical Engineering Journal, 2017,320. |
36 | SHAO D , WANG X , LI J , et al . Reductive immobilization of uranium by PAAM-FeS/Fe3O4 magnetic composites[J]. Environmental Science Water Research & Technology, 2015, 1(2): 169-176. |
37 | QI Z , JOSHI T P , LIU R , et al . Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony[J]. Journal of Hazardous Materials, 2017, 343: 36-48. |
38 | SONG X M , TAN L C , MA H Y , et al . Facile preparation of S-doped magnetite hollow spheres for highly efficient sorption of uranium(Ⅵ)[J]. Dalton Transactions, 2017, 46(10): 3347-3352. |
39 | TAN L , WANG Y , LIU Q , et al . Enhanced adsorption of uranium (Ⅵ) using a three-dimensional layered double hydroxide/graphene hybrid material[J]. Chemical Engineering Journal, 2015, 259: 752-760. |
40 | TAN L , WANG J , LIU Q , et al . The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium(Ⅵ) removal[J]. New Journal of Chemistry, 2014, 39(2): 868-76. |
41 | ZHAO D , CHEN L , SUN M , et al . Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical & Nuclear Chemistry, 2015, 306(1): 221-229. |
42 | SHAO L , WANG X , REN Y , et al . Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal[J]. Chemical Engineering Journal, 2016, 286: 311-319. |
43 | DING C , CHENG W , SUN Y , et al . Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions, 2014, 43(10): 3888-3896. |
44 | CHEN L , ZHAO D , CHEN S , et al . One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(Ⅵ) removal[J]. J. Colloid. Interface Sci., 2016, 472: 99-107. |
45 | ZHANG X , TAN J , XU X , et al . A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable[J]. Journal of Solid State Chemistry, 2017, 253: 219-226. |
46 | ZHAO Y , LI J , ZHAO L , et al . Synthesis of amidoxime-functionalized Fe3O4@SiO2, core-shell magnetic microspheres for highly efficient sorption of U(Ⅵ)[J]. Chemical Engineering Journal, 2014, 235: 275-283. |
47 | 张晓飞 .几种核壳结构磁性材料的制备及其铀吸附性能[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
ZHANG Xiaofei . Synthesis of core/shell structural magnetic materials and their adsorption properties of uranium[D]. Harbin: Harbin Engineering University, 2014. | |
48 | 吴伟林, 谢永波, 谢磊, 等 . 纳米Fe3O4负载铜绿假单胞菌吸附U(Ⅵ)的热力学与动力学研究[J]. 安全与环境学报, 2013, 13(6): 26-30. |
5 | LIU J , LIU A , ZHANG W X . The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): Ag-gregation, sedimentation, and reactivity with Ni(Ⅱ) in water[J]. Chemical Engineering Journal, 2016, 303: 268-274. |
6 | KUMARI M , Pittman C U , MOHAN D . Heavy metals chromium (Ⅵ) and lead (Ⅱ) removal from water using mesoporous magnetite (Fe3O4) nanospheres[J]. Journal of Colloid & Interface Science, 2015, 442: 120-132. |
48 | WU Weilin , XIE Yongbo , XIE Lei , et al . Thermodynamics and kinetics of adsorption of U(Ⅵ) by nano-Fe3O4 loaded Pseudomonas aeruginosa [J]. Journal of Safety and Environment, 2013, 13(6): 26-30. |
49 | YUAN Dingzhong , ZHANG Shiao , XIANG Zhihao , et al . Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: a combined experimental and DFT study[J]. ACS Sustainable Chem. Eng., 2018, 6(8): 9619-9627. |
50 | XU S , ZHAO Y , ZHENG F , et al . Hollow Fe3O4@mesoporous carbon core-shell microspheres for efficient sorption of radionuclides[J]. Journal of Materials Science, 2016, 51(5): 2550-2557. |
51 | ALJARRAH M T , Al-HARAHSHEH MOHAMMAD S , MAYYAS M , et al . In situ synthesis of quaternary ammonium on silica-coated magnetic nanoparticles and it’s application for the removal of uranium (Ⅵ) from aqueous media[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 5662-5669. |
52 | ZHU J , LIU Q , LI Z , et al . Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes[J]. Journal of Hazardous Materials, 2018, 353: 9-17. |
53 | CUI L , GUO X , WEI Q , et al . Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism[J]. J. Colloid. Interface Sci., 2015, 439: 112-120. |
54 | GHANBARI F , MORADI M , MANSHOURI M . Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1846-1851. |
55 | Al-HARAHSHEH M , ALJARRAH M , MAYYAS M , et al . High-stability polyamine/amide-functionalized magnetic nanoparticles for enhanced extraction of uranium from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86: 148-157. |
56 | CHEN M L , WANG H , MAO Q X , et al . Hydrous-ferric oxide nanorods grown on PEGylated graphene oxide with superior capacity for selective adsorption of albumin[J]. Carbon, 2015, 85: 335-343. |
57 | BAI L , LI Z , ZHANG Y , et al . Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution[J]. Chemical Engineering Journal, 2015, 279: 757-766. |
7 | KATARIA N , GARG V K . Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (Ⅱ) removal from water: regeneration and mechanism[J]. Chemosphere, 2018, 208: 818-828. |
8 | ZHONG Y , YU L , CHEN Z F , et al . Microwave-assisted synthesis of Fe3O4 nanocrystals with predominantly exposed facets and their heterogeneous UVA/Fenton catalytic activity[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29203-29212. |
58 | MENG Y , CHEN D , SUN Y , et al . Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method[J]. Applied Surface Science, 2015, 324: 745-750. |
59 | CUI J , MA X L , WU X G , et al . Adsorption of 2,4,6-trichlorophenol by magnetic mesoporous SiO2 and the adsorption capacity regeneration by UV photolysis[J]. Desalination and Water Treatment, 2016, 57(14): 6614-6623. |
60 | ZHAO H , LANG Y . Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 152-160. |
61 | 陈小松, 周利民, 刘峙嵘 .三聚磷酸钠交联磁性壳聚糖树脂对铀酰离子的吸附特性[J]. 原子能科学技术, 2015, 49(6): 972-978. |
CHEN Xiaosong , ZHOU Limin , LIU Zhirong . Adsorption of U O 2 2 + ion onto tripolyphosphate-crosslinked magnetic chitosan resin[J]. Atomic Energy Science and Technology, 2015, 49(6): 972-978. | |
62 | 胡建邦, 袁亚莉, 唐琼, 等 .氨基化改性Fe3O4/SiO2复合磁性材料的制备以及对铀(Ⅵ)的吸附研究[J]. 应用化工, 2012, 41(12): 2067-2070, 2074. |
HU Jianbang , YUAN Yali , TANG Qiong , et al . Preparation and adsorption of uranyl(Ⅵ) of amino-modified magnetic Fe3O4/SiO2 composite materials[J]. Applied Chemical Industry, 2012, 41(12): 2067-2070, 2074. | |
9 | 贾映彤, 高志贤, 崔建升 . 两种氨基修饰的四氧化三铁磁性纳米颗粒的制备与表征[J]. 解放军预防医学杂志, 2017, 35(1): 1-5. |
JIA Yingtong , GAO Zhixian , CUI Jiansheng . Preparation and characterization of two different amino-modified iron oxide magnetic nanoparticles and determination of the amount of amino on nanoparticle surface[J]. Journal of Preventive Medicine of Chinese People’s Liberation Army, 2017, (1): 1-5. | |
10 | ZHAO N , YANG X , ZHANG J , et al . Adsorption mechanisms of dodecylbenzene sulfonic acid by corn straw and poplar leaf biochars[J]. Materials, 2017, 10(10): 1119. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[5] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[6] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[8] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[9] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[10] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[11] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[14] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[15] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |