Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 4949-4955.DOI: 10.16085/j.issn.1000-6613.2019-0254
• Industrial catalysis • Previous Articles Next Articles
Lingyu WANG(),Wenfeng HAN(
),Huazhang LIU(
),Xiazhen YANG
Received:
2019-02-25
Online:
2019-11-05
Published:
2019-11-05
Contact:
Wenfeng HAN,Huazhang LIU
通讯作者:
韩文锋,刘化章
作者简介:
王玲玉(1992—),女,硕士研究生,研究方向为工业催化。E-mail:基金资助:
CLC Number:
Lingyu WANG,Wenfeng HAN,Huazhang LIU,Xiazhen YANG. Research progress on active phase of iron-based catalysts for light olefins synthesis from syngas[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4949-4955.
王玲玉,韩文锋,刘化章,杨霞珍. 合成气制低碳烯烃铁催化剂活性相的研究进展[J]. 化工进展, 2019, 38(11): 4949-4955.
1 | GALVIS H M T , BITTER J H , KHARE C B , et al . Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
2 | CORMA A , MELO F V , SAUVANAUD L , et al . Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706. |
3 | CHENG K , VIRGINIE M , ORDOMSKYO V V , et al . Pore size effects in high-temperature Fischer-Tropsch synthesis over supported iron catalysts[J]. Journal of Catalysis, 2015, 328: 139-150. |
4 | 董丽, 杨学萍 . 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 41(10): 1201-1206. |
DONG L , YANG X P . New advances in direct production of light olefins from syngas[J]. Petrochemical Technology, 2012, 41(10): 1201-1206. | |
5 | 郭海军, 张海荣, 王璨, 等 . 合成气一步法直接转化制备低碳烯烃催化剂研究进展[J]. 新能源进展, 2017, 5(5): 358-364. |
GUO H J , ZHANG H R , WANG C , et al . Advances in catalysts for one-step direct conversion of syngas to light olefins[J]. Advances in New and Renewable Energy, 2017, 5(5): 358-364. | |
6 | DE SMIT E , WECKHUYSEN B M . The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
7 | LIU Y , CHEN J F , ZHANG Y . Effects of pretreatment on iron-based catalysts for forming light olefins via Fischer-Tropsch synthesis[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 433-449. |
8 | LIU Y , CHEN J F , BAO J , et al . Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catalysis, 2015, 5(6): 3905-3909. |
9 | 蔡丽萍 . 助催化剂及工艺参数对Fe(1- x )O催化剂费-托合成性能的影响[D].杭州: 浙江工业大学,2006. |
CAI L P . Effect of promoters and reaction conditions on Fe1- x O-based iron catalysts for Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University of Technology, 2006. | |
10 | LI T Z , WANG H L , YANG Y , et al . Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. Journal of Energy Chemistry, 2013, 22(4): 624-632. |
11 | ZHAO M , CUI Y , SUN J C , et al . Modified iron catalyst for direct synthesis of light olefin from syngas[J]. Catalysis Today, 2018, 316: 142-148. |
12 | GAO X H , ZHANG J l , CHEN N , et al . Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chinese Journal of Catalysis, 2016, 37 (4): 510-516. |
13 | WANG G C , ZHANG K , LIU P , et al . Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. Journal of Industrial and Engineering Chemistry, 2013, 19 (3): 961-965. |
14 | GALVIS H M T , DE JONG K P . Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
15 | 夏航, 杨霞珍, 霍超, 等 . 合成气一步制取低碳烯烃铁基催化剂的研究进展[J]. 现代化工, 2016,36(8):19-23. |
XIA H , YANG X Z , HUO C , et al . Research progress of iron-based catalyst for direct conversion of synthesis gas to light olefins[J]. Modern Chemical Industry, 2016, 36(8): 19-23. | |
16 | SAGE V , BURKE N . Use of probe molecules for Fischer-Tropsch mechanistic investigations: a short review[J]. Catalysis Today, 2011, 178(1): 137-141. |
17 | GU B , ORDOMSKY V V , BAHRI M , et al . Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts[J]. Applied Catalysis B: Environmental, 2018, 234: 153-166. |
18 | JIAO F , LI J J , PAN X L , et al . Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
19 | CHANG Q , ZHANG C H , LIU C W , et al . Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ˗Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catalysis, 2018, 8(4): 3304-3316. |
20 | PARK B J , JANG S H , LEE J H, et al . Hyperactive iron carbide@N-doped reduced graphene oxide/carbon nanotube hybrid architecture for rapid CO hydrogenation[J]. Journal of Materials Chemistry A, 2018, 6(24): 11134-11139. |
21 | OBRIEN R J , XU L G , SPICER R L , et al . Activation study of precipitated iron Fischer-Tropsch catalysts[J]. Energy & Fuels, 1996, 10(4): 921-926. |
22 | TONG A , DAN D, YI C . Effect of reduction and carburization pretreatment on iron catalyst for synthesis of light olefins from CO hydrogenation[J]. Chemical Research in Chinese Universities, 2017, 33(4): 672-677. |
23 | LIU X W , ZHAO S , MENG Y , et al . Mössbauer spectroscopy of iron carbides: from prediction to experimental confirmation[J]. Scientific Reports, 2016, 6: 26184. |
24 | DING M Y , YANG Y , XU J , et al . Effect of reduction pressure on precipitated potassium promoted iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2008, 345(2): 176-184. |
25 | WANG X B , CHEN X D , DING H , et al . Synthesis and magnetic properties of Fe3C doped with Mn or Ni for applications as adsorbents[J]. Dyes and Pigments, 2017, 144: 76-79. |
26 | YANG C , ZHAO H B , HOU Y L , et al . Fe5C2 Nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134(38): 15814-15821. |
27 | WANG P , CHEN W , CHIANG F K , et al . Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Science Advances, 2018, 4(10): 2947. |
28 | PHAM T H , DUAN X Z , QIAN G , et al . CO activation pathways of Fischer-Tropsch synthesis on χ-Fe5C2 (510): direct versus hydrogen-assisted CO dissociation[J]. Journal of Physical Chemistry C, 2014, 118(19): 10170-10176. |
29 | WANG D , CHEN B X , DUAN X Z , et al . Iron-based Fischer-Tropsch synthesis of lower olefins: the nature of χ-Fe5C2, catalyst and why and how to introduce promoters[J]. Journal of Energy Chemistry, 2016, 25(6): 911-916. |
30 | KANG S W , KIM K , CHUN D H , et al . High-performance Fe5C2@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons[J]. Journal of Catalysis, 2017, 349: 66-74. |
31 | HU E L , YU X Y , CHEN F , et al . Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction[J]. Advanced Energy Materials, 2017, 8(9): 1702476. |
32 | DE SMIT E , CINQUINI F , BEALE A M , et al . Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ c [J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
33 | XIANG M L , ZOU J , LI Q H , et al . Catalytic performance of iron carbide for carbon monoxide hydrogenation[J]. Journal of Natural Gas Chemistry, 2010, 19(5): 468-470. |
34 | HERRANZ T , ROJAS S , PEREZ-ALONSO F J , et al . Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. Journal of Catalysis, 2006, 243(1): 199-211. |
35 | DE SMIT E , BEALE A M , NIKITENKO S , et al . Local and long range order in promoted iron-based Fischer-Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. Journal of Catalysis, 2009, 262(2): 244-256. |
36 | CAER G L , DUBOIS J M , PIJOLAT M , et al . Characterization by Mössbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis[J]. Journal of Physical Chemistry, 1982, 86(24): 4799-4808. |
37 | XU K , SUN B , LIN J , et al . ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014, 5: 5783. |
38 | LIU X W , ZHAO S , MENG Y , et al . Mössbauer spectroscopy of iron carbides: from prediction to experimental confirmation[J]. Scientific Reports, 2016, 6: 26184. |
39 | ZHAO S , LIU X W , HUO C F , et al . Potassium promotion on CO hydrogenation on the χ-Fe5C2(111) surface with carbon vacancy[J]. Applied Catalysis A: General, 2017, 534: 22-29. |
40 | GALVIS H M T , BITTER J H , DAVIDIAN T , et al . Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215. |
41 | ZHAO S , LIU X W , HUO C F , et al . The role of potassium promoter in surface carbon hydrogenation on Hägg carbide surfaces[J]. Applied Catalysis A: General, 2015, 493: 68-76. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[3] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[4] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[5] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[6] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[7] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[8] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[9] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[10] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[11] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[12] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[13] | LIU Meijia, WANG Gang, ZHANG Zhongdong, HE Shengbao, GAO Jinsen. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199. |
[14] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[15] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 733
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 387
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |