Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 4956-4964.DOI: 10.16085/j.issn.1000-6613.2019-0391
• Industrial catalysis • Previous Articles Next Articles
Xuhui WANG1,2(),Jinxian ZHAO1,Yongli PEI1,Jun REN1()
Received:
2019-03-15
Online:
2019-11-05
Published:
2019-11-05
Contact:
Jun REN
通讯作者:
任军
作者简介:
王旭慧(1984—),女,博士研究生,研究方向为二氧化碳的转化利用。E-mail:基金资助:
CLC Number:
Xuhui WANG,Jinxian ZHAO,Yongli PEI,Jun REN. Research progress in dimethyl carbonate synthesis from carbon dioxide and methanol catalyzed by metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4956-4964.
王旭慧,赵金仙,裴永丽,任军. 金属氧化物催化CO2与甲醇合成碳酸二甲酯的研究进展[J]. 化工进展, 2019, 38(11): 4956-4964.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0391
1 | UNNIKRISHNAN P , DARBHA S . Direct synthesis of dimethyl carbonate from CO2 and methanol over CeO2 catalysts of different morphologies[J]. Journal of Chemical Sciences, 2016,128(6): 957-965. |
2 | 杨盼盼,孙琦,张玉龙,等 .甲醇合成中CO2作用的研究进展[J].化工进展, 2018,37(1):94-101. |
YANG P P , SUN Q , ZHANG Y L , et al . Research progress of the role of CO2 in methanol synthesis[J]. Chemical Industry and Engineering Progress, 2018, 37(1):94-101. | |
3 | 张成 .CO与CO2甲烷化反应研究进展[J].化工进展, 2007,26(9):1269-1273. |
ZHANG C . Research progress of methanation of carbon monoxide and carbon dioxide[J]. Chemical Industry and Engineering Progress, 2007, 26(9):1269-1273. | |
4 | TANG Q , HONG Q , LIU Z . CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo[J]. Journal of Catalysis, 2009, 263: 114-122. |
5 | LI C F , ZHONG S H . Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst[J]. Catalysis Today, 2003, 82: 83-90. |
6 | BIAN J , XIAO M , WANG S J , et al . Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper- nickel/graphite bimetallic nanocomposite catalyst[J]. Chemical Engineering Journal, 2009, 147: 287-296. |
7 | 王奔, 陈红萍, 芮玉兰, 等 .甲醇和二氧化碳合成碳酸二甲酯的研究进展[J]. 化工进展, 2010, 29(s1): 305-310. |
WANG B , CHEN H P , RUI Y L ,et al . Research progress in dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chemical Industry and Engineering Progress, 2010, 29(s1): 305-310. | |
8 | TAMBOLI A H , CHAUGULE A A , KIM H . Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chemical Engineering Journal, 2017, 323: 530-544. |
9 | KONGPANNA P , PAVARAJARN V , GANI R , et al . Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production[J]. Chemical Engineering Research and Design, 2015, 93: 496-510. |
10 | 肖雪, 路嫔, 韩媛媛, 等 . 二氧化碳与甲醇合成碳酸二甲酯反应的热力学探讨[J]. 天然气化工,2007, 32(2): 34-37. |
XIAO X , LU B , HAN Y Y , et al . Thermodynamics of dmiethyl carbonate synthesis from carbon dioxide and methanol[J]. Natural Gas Chemical Industry, 2007, 32(2): 34-37. | |
11 | 赵天生, 韩怡卓, 孙予罕 . 甲醇和CO2合成碳酸二甲酯体系的热力学分析[J]. 天然气化工, 1998, 23(5): 52-56. |
ZHAO T S , HAN Y Z , SUN Y H . Thermodynamic estimation of direct synthesis of DMC from CH3OH and CO2 [J]. Natural Gas Chemical Industry, 1998, 23(5): 52-56. | |
12 | TAN H Z , WANG Z Q , XU Z N , et al . Review on the synthesis of dimethyl carbonate[J]. Catalysis Today, 2018, 316: 2-12. |
13 | CAO Y , CHENG H , MA L , et al . Research progress in the direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Catalysis Surveys from Asia, 2012, 16: 138-147. |
14 | HUANG S Y , YAN B , WANG S P , et al . Recent advances in dialkyl carbonates synthesis and applications[J].Chemical Society Reviews, 2015, 44(10): 3079-3116. |
15 | JUNG K T , BELL A T . An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. Journal of Catalysis, 2001, 204(2): 339-347. |
16 | PISKORZ W , GRYBOS J , ZASADA F , et al . Periodic DFT and atomistic thermodynamic modeling of thesurface hydration equilibria and morphology of monoclinic ZrO2 nanocrystals[J]. The Journal of Physical Chemistry C, 2011, 115: 24274-24286. |
17 | SALAVATI-FARD T , VASILIADOU E S , JENNESS G R , et al . Lewis acid site and hydrogen-bond-mediated polarization synergy in the catalysis of Diels-Alder cycloaddition by band-gap transition-metal oxides[J]. ACS Catalysis, 2019, 9: 701-715. |
18 | MA Z Y , YANG C , WEI W , et al . Surface properties and CO adsorption on zirconia polymorphs[J]. Journal of Molecular Catalysis A: Chemical, 2005, 227: 119-124. |
19 | WITOON T , CHALORNGTHAM J , DUMRONGBUNDITKUL P , et al . CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases[J]. Chemical Engineering Journal, 2016, 293: 327-336. |
20 | SATO A G , VOLANTI D P , MEIRA D M , et al . Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. Journal of Catalysis, 2013, 307: 1-17. |
21 | JUNG K T , BELL A T . Effects of catalyst phase structure on the elementary processes involved in the synthesis of dimethyl carbonate from methanol and carbon dioxide over zirconia[J]. Topics in Catalysis, 2002, 20(1/2/3/4): 97-105. |
22 | TOMISHIGE K , IKEDA Y , SAKAIHORI T , et al . Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Journal of Catalysis, 2000, 192(2): 355-362. |
23 | WANG X H , ZHAO J X , SUN W , et al . A DFT study of dimethyl carbonate synthesis from methanol and CO2 on zirconia: effect of crystalline phases[J]. Computational Materials Science, 2019,159:210-221. |
24 | IKEDA Y , ASADULLAH M , FUJIMOTO K , et al . Structure of the active sites on H3PO4/ZrO2 catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide[J]. The Journal of Physical Chemistry B, 2001, 105(43): 10653-10658. |
25 | JIANG C J , GUO Y H , WANG C G , et al . Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions[J]. Applied Catalysis A: General, 2003, 256: 203-212. |
26 | WU X L , XIAO M , MENG Y Z , et al . Direct synthesis of dimethyl carbonate on H3PO4 modified V2O5 [J]. Journal of Molecular Catalysis A: Chemical, 2005, 238: 158-162. |
27 | LA K L, JUNG J C , KIM H , et al . Effect of acid-base properties of H3PW12O40/Ce x Ti1- x O2 catalysts on the direct synthesis of dimethyl carbonate from methanol and carbon dioxide :a TPD study of H3PW12O40/Ce x Ti1- x O2 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2007, 269: 41-45. |
28 | WANG S P , ZHAO L F , WANG W , et al . Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol[J]. Nanoscale, 2013, 5(12): 5582-5588. |
29 | ZHAO S Y , WANG S P , ZHAO Y J , et al . An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2 [J]. Chinese Chemical Letters, 2016, 28(1): 1-5. |
30 | LIU B , LI C M , ZHANG G Q , et al . Direct synthesis of dimethyl carbonate from CO2 and methanol over CaO-CeO2 catalysts: the role of acid-base properties and surface oxygen vacancies[J]. New Journal of Chemistry, 2017, 41(20): 12231-12240. |
31 | CUI Z X , FAN J , DUAN H J , et al . Effect of calcination atmospheres on the catalytic performance of nano-CeO2 in direct synthesis of DMC from methanol and CO2 [J]. Korean Journal of Chemical Engineering, 2017, 34(1): 29-36. |
32 | ARESTA M , DIBENEDETTO A , PASTORE C , et al . Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism[J]. Journal of Catalysis, 2010, 269(1): 44-52. |
33 | FU Z W , YU Y H , LI Z , et al . Surface reduced CeO2 nanowires for direct conversion of CO2 and methanol to dimethyl carbonate : catalytic performance and role of oxygen vacancy[J]. Catalysts, 2018,164(8):1-11. |
34 | ZHANG M , XIAO M , WANG S J , et al . Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Journal of Cleaner Production, 2015, 103: 847-853. |
35 | WADA S , OKA K, WATANABE K , et al . Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353K and 1.3MPa and the reaction mechanism[J]. Frontiers in Chemistry, 2013, 1: 1-8. |
36 | TOMISHIGE K , KUNIMORI K . Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst : effect of H2O removal from the reaction system[J]. Applied Catalysis A: General, 2002, 237: 103-109. |
37 | KUMAR P , WITH P , SRIVASTAVA V C , et al . Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study[J]. Journal of Alloys and Compounds, 2017, 696: 718-726. |
38 | HOFMANN H J , BRANDNER A , CLAUS P . Direct synthesis of dimethyl carbonate by carboxylation of methanol on ceria-based mixed oxides[J]. Chemical Engineering and Technology, 2012, 35(12):2140-2146. |
39 | LIU H , ZOU W J , XU X L , et al . The proportion of Ce4+ in surface of Ce x Zr1- x O2 catalysts: the key parameter for direct carboxylation of methanol to dimethyl carbonate[J]. Journal of CO2 Utilization, 2017, 17: 43-49. |
40 | LEE H J, JOE W, SONG I K . Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over transition metal oxide/Ce0.6Zr0.4O2 catalysts: effect of acidity and basicity of the catalysts[J]. Korean Journal of Chemical Engineering, 2012, 29(3): 317-322. |
41 | 陈红萍, 梁英华, 郑小满, 等 .铁锆复合氧化物催化甲醇与CO2直接合成DMC反应性能[J].分子催化, 2013, 27(6): 556-565. |
CHEN H P , LIANG Y H , ZHENG X M , et al . Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Fe-Zr-O catalyst[J]. Journal of Molecular Catalysis, 2013, 27(6): 556-565. | |
42 | KUMAR P , SRIVASTAVA V C , GLÄSER R , et al . Active ceria-calcium oxide catalysts for dimethyl carbonate synthesis by conversion of CO2 [J]. Powder Technology, 2017, 309: 13-21. |
43 | TOMISHIGE K , FURUSAWA Y , IKEDA Y , et al . CeO2-ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Catalysis Letters, 2001, 76(1): 71-74. |
44 | SAADA R , KELLICI S , HEIL T , et al . Greener synthesis of dimethyl carbonate using a novel ceria-zirconia/graphene nanocomposite catalyst[J]. Applied Catalysis B: Environmental, 2015,168/169:353-362. |
45 | ZHANG Z F , LIU Z W , LU J , et al . Synthesis of dimethyl carbonate from carbon dioxide and methanol over Ce x Zr1- x O2 and [EMIM]Br/Ce0.5Zr0.5O2 [J]. Industrial & Engineering Chemistry Research, 2011,50:1981-1988. |
46 | STOIAN D , MEDINA F , URAKAWA A . Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine[J]. ACS Catalysis, 2018, 8(4): 3181-3193. |
47 | ETA V, MÄKI-ARVELA P , WÄRNÅ J , et al . Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2-MgO catalyst in the presence of butylene oxide as additive[J]. Applied Catalysis A: General, 2011, 404: 39-46. |
48 | BANSODE A , URAKAWA A . Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent[J]. ACS Catalysis, 2014, 4: 3877-3880. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[7] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[11] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[12] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |