Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2813-2824.DOI: 10.16085/j.issn.1000-6613.2018-1880
• Materials science and technology • Previous Articles Next Articles
Shilin ZHAO1(),Fanping MENG1(),Yufei LIN2,Yang ZHENG2,Guoshan WANG2,Jiangyue WU2
Received:
2018-09-18
Online:
2019-06-05
Published:
2019-06-05
Contact:
Fanping MENG
赵诗琳1(),孟范平1(),林雨霏2,郑洋2,王国善2,武江越2
通讯作者:
孟范平
作者简介:
赵诗琳(1994—),女,硕士研究生,研究方向为海洋环境生态学。E-mail:<email>shilin.xingmu@qq.com</email>。
基金资助:
CLC Number:
Shilin ZHAO, Fanping MENG, Yufei LIN, Yang ZHENG, Guoshan WANG, Jiangyue WU. Sorbents for seprating xylene and their applicability in waters after the accidental spills: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2813-2824.
赵诗琳, 孟范平, 林雨霏, 郑洋, 王国善, 武江越. 二甲苯吸附剂及其在泄漏事故水域的适用性评述[J]. 化工进展, 2019, 38(06): 2813-2824.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1880
吸附剂 | 改性方法 | S BET /m2·g-1 | 吸附质 | 温度/℃ | pH | 平衡吸附容量 /mg·g-1 | 吸附等温线模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|
硅藻土(采自希腊北部的库扎尼地区) | 未处理 | 38.4 | PX、OX | 20 | — | 0.34、0.20 | Freundlich | 拟二级 | [ |
550℃煅烧 | 43.3 | PX、OX | 20 | — | 0.82、0.64 | Freundlich | 拟二级 | [ | |
750℃煅烧 | 31.81 | PX、OX | 20 | — | 0.75、0.50 | Freundlich | 拟二级 | [ | |
950℃煅烧 | 7.66 | PX、OX | 20 | — | 0.42、0.23 | Freundlich | 拟二级 | [ | |
硅藻土(西班牙一种商品化产品) | 未处理 | 13.04 | MX、PX、OX | 20 | — | 0.10、0.10、0.04 | Freundlich | — | [ |
550℃煅烧 | 10.1 | MX、PX、OX | 20 | — | 0.15、0.15、0.08 | Freundlich | — | [ | |
DHCl | 9.4 | MX、PX、OX | 20 | — | 0.19、0.19、0.08 | Freundlich | — | [ | |
粉煤灰制成的Na-P1沸石 | 不改性 | 75.59 | PX、OX | 20 | — | 0.097、0.082 | Langmuir | 拟二级 | [ |
粉煤灰制成的Na-P1沸石 | 不改性 | 88 | PX | 20 | — | 1.81~11.41 | — | — | [ |
HDTMA-Br | — | PX | 20 | — | 1.79~11.47 | — | — | [ | |
天然斜发沸石 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.134 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.255 | — | 拟二级 | [ | |
沸石纳米颗粒 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.624 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.662 | — | 拟二级 | [ | |
蒙脱石 | PEG | 27.8 | 二甲苯 | 25 | 7.0 | 6.00 | Freundlich | 拟二级 | [ |
蒙脱石 | TTAB | 26.2 | 二甲苯 | — | 7.0 | 6.98 | Freundlich | 拟二级 | [ |
蒙脱石 | HDTMA-Cl | 61.66 | MX、PX | 23 | 9.0 | 0.76、0.75 | Langmuir-Freundlich | — | [ |
吸附剂 | 改性方法 | S BET /m2·g-1 | 吸附质 | 温度/℃ | pH | 平衡吸附容量 /mg·g-1 | 吸附等温线模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|
硅藻土(采自希腊北部的库扎尼地区) | 未处理 | 38.4 | PX、OX | 20 | — | 0.34、0.20 | Freundlich | 拟二级 | [ |
550℃煅烧 | 43.3 | PX、OX | 20 | — | 0.82、0.64 | Freundlich | 拟二级 | [ | |
750℃煅烧 | 31.81 | PX、OX | 20 | — | 0.75、0.50 | Freundlich | 拟二级 | [ | |
950℃煅烧 | 7.66 | PX、OX | 20 | — | 0.42、0.23 | Freundlich | 拟二级 | [ | |
硅藻土(西班牙一种商品化产品) | 未处理 | 13.04 | MX、PX、OX | 20 | — | 0.10、0.10、0.04 | Freundlich | — | [ |
550℃煅烧 | 10.1 | MX、PX、OX | 20 | — | 0.15、0.15、0.08 | Freundlich | — | [ | |
DHCl | 9.4 | MX、PX、OX | 20 | — | 0.19、0.19、0.08 | Freundlich | — | [ | |
粉煤灰制成的Na-P1沸石 | 不改性 | 75.59 | PX、OX | 20 | — | 0.097、0.082 | Langmuir | 拟二级 | [ |
粉煤灰制成的Na-P1沸石 | 不改性 | 88 | PX | 20 | — | 1.81~11.41 | — | — | [ |
HDTMA-Br | — | PX | 20 | — | 1.79~11.47 | — | — | [ | |
天然斜发沸石 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.134 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.255 | — | 拟二级 | [ | |
沸石纳米颗粒 | HDTMA-Cl | — | 二甲苯 | 20 | — | 0.624 | — | 拟二级 | [ |
CPB | — | 二甲苯 | 20 | — | 0.662 | — | 拟二级 | [ | |
蒙脱石 | PEG | 27.8 | 二甲苯 | 25 | 7.0 | 6.00 | Freundlich | 拟二级 | [ |
蒙脱石 | TTAB | 26.2 | 二甲苯 | — | 7.0 | 6.98 | Freundlich | 拟二级 | [ |
蒙脱石 | HDTMA-Cl | 61.66 | MX、PX | 23 | 9.0 | 0.76、0.75 | Langmuir-Freundlich | — | [ |
吸附剂 | 改性剂或方法 | S BET /m2·g-1 | 吸附物质 | 温度/℃ | 平衡吸附容量/g·g-1 | 吸附等温线 | 吸附动力学 | 文献 |
---|---|---|---|---|---|---|---|---|
木棉纤维 | 不改性 | — | 二甲苯 | 20 | 29.2 | — | — | [ |
NaClO2 | — | 二甲苯 | 20 | 36.2 | — | — | ||
红麻芯 | MTMS | 9.13 | 二甲苯 | — | 19.6 | — | — | [ |
泥炭 | — | — | MX,PX | 25 | 11.23×10-6 | Freundlich | 拟二级 | [ |
OX | 25 | 9.72×10-6 | Freundlich | 拟二级 | ||||
木屑 | — | — | MX,PXOX | 25 | 9.07×10-6 | Freundlich | 拟二级 | [ |
25 | 6.45×10-6 | Freundlich | 拟二级 | |||||
KC-8活性炭 | — | 769.39 | PX | 40 | 0.235 | Freundlich | 拟二级 | [ |
文冠果壳活性炭 | — | 1455.23 | 二甲苯 | — | 1.878 | — | 拟二级 | [ |
吸附剂 | 改性剂或方法 | S BET /m2·g-1 | 吸附物质 | 温度/℃ | 平衡吸附容量/g·g-1 | 吸附等温线 | 吸附动力学 | 文献 |
---|---|---|---|---|---|---|---|---|
木棉纤维 | 不改性 | — | 二甲苯 | 20 | 29.2 | — | — | [ |
NaClO2 | — | 二甲苯 | 20 | 36.2 | — | — | ||
红麻芯 | MTMS | 9.13 | 二甲苯 | — | 19.6 | — | — | [ |
泥炭 | — | — | MX,PX | 25 | 11.23×10-6 | Freundlich | 拟二级 | [ |
OX | 25 | 9.72×10-6 | Freundlich | 拟二级 | ||||
木屑 | — | — | MX,PXOX | 25 | 9.07×10-6 | Freundlich | 拟二级 | [ |
25 | 6.45×10-6 | Freundlich | 拟二级 | |||||
KC-8活性炭 | — | 769.39 | PX | 40 | 0.235 | Freundlich | 拟二级 | [ |
文冠果壳活性炭 | — | 1455.23 | 二甲苯 | — | 1.878 | — | 拟二级 | [ |
纳米材料 | 改性方法 | S BET /m2·g-1 | 孔径/nm | 吸附质 | q m/mg·g-1 | 温度/℃ | pH | 吸附等温模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|---|
多壁碳纳米管 | 无 | 471 | 5.4 | PX、MX、OX | 76.15、76.86、61.86 | 20 | 7.0 | Langmuir | — | [ |
3%NaOCl氧化 | 381 | 6 | PX、MX、OX | 56.17、112.19、75.27 | 20 | 7.0 | Langmuir | — | ||
15%NaOCl氧化 | 327 | 5.9 | PX、MX、OX | 44.60、48.58、44.42 | 20 | 7.0 | Langmuir | — | ||
30%NaOCl氧化 | 382 | 6 | PX、MX、OX | 103.40、109.78、97.39 | 20 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75 | 0.25 | PX | 172.68 | 25 | 7.0 | Langmuir | — | [ |
30%NaOCl氧化 | 88.56 | 0.27 | PX | 413.77 | 25 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75/231.89① | 0.25/23.54① | PX | 147.8 | 25 | 7.0 | — | — | [ |
NaOCl活化 | 133.33/194.08① | 0.30/23.75① | PX | 318.3 | 25 | 7.0 | — | — | ||
多壁碳纳米管 | 无 | 138 | 16.7 | PX | 219.51 | 25 | 6.0 | Langmuir- Freundlich | 拟二级 | [ |
氧化铁纳米颗粒浸渍 | 216 | 18.5 | PX | 458.52 | 25 | 6.0 | 拟二级 | |||
多壁碳纳米管 | 无 | 113.5 | 11.03 | PX、MX、OX | 44.15、70.58、44.18 | 20 | 6.0 | Langmuir | 拟二级 | [ |
KOH活化 | 662.1 | 2.26 | PX、MX、OX | 105.59、227.05、138.04 | 20 | 6.0 | Langmuir | 拟二级 | ||
多壁碳纳米管 | KOH活化 | 534.6 | — | MX | 247.83 | 20 | 6.0 | Langmuir | 拟二级 | [ |
纳米材料 | 改性方法 | S BET /m2·g-1 | 孔径/nm | 吸附质 | q m/mg·g-1 | 温度/℃ | pH | 吸附等温模型 | 吸附 动力学模型 | 文献 |
---|---|---|---|---|---|---|---|---|---|---|
多壁碳纳米管 | 无 | 471 | 5.4 | PX、MX、OX | 76.15、76.86、61.86 | 20 | 7.0 | Langmuir | — | [ |
3%NaOCl氧化 | 381 | 6 | PX、MX、OX | 56.17、112.19、75.27 | 20 | 7.0 | Langmuir | — | ||
15%NaOCl氧化 | 327 | 5.9 | PX、MX、OX | 44.60、48.58、44.42 | 20 | 7.0 | Langmuir | — | ||
30%NaOCl氧化 | 382 | 6 | PX、MX、OX | 103.40、109.78、97.39 | 20 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75 | 0.25 | PX | 172.68 | 25 | 7.0 | Langmuir | — | [ |
30%NaOCl氧化 | 88.56 | 0.27 | PX | 413.77 | 25 | 7.0 | Langmuir | — | ||
多壁碳纳米管 | 无 | 310.75/231.89① | 0.25/23.54① | PX | 147.8 | 25 | 7.0 | — | — | [ |
NaOCl活化 | 133.33/194.08① | 0.30/23.75① | PX | 318.3 | 25 | 7.0 | — | — | ||
多壁碳纳米管 | 无 | 138 | 16.7 | PX | 219.51 | 25 | 6.0 | Langmuir- Freundlich | 拟二级 | [ |
氧化铁纳米颗粒浸渍 | 216 | 18.5 | PX | 458.52 | 25 | 6.0 | 拟二级 | |||
多壁碳纳米管 | 无 | 113.5 | 11.03 | PX、MX、OX | 44.15、70.58、44.18 | 20 | 6.0 | Langmuir | 拟二级 | [ |
KOH活化 | 662.1 | 2.26 | PX、MX、OX | 105.59、227.05、138.04 | 20 | 6.0 | Langmuir | 拟二级 | ||
多壁碳纳米管 | KOH活化 | 534.6 | — | MX | 247.83 | 20 | 6.0 | Langmuir | 拟二级 | [ |
吸附剂 | 吸附质 | 温度/℃ | 吸油倍率 /g·g-1 | 吸附等温线 模型 | 吸附动力学模型 | (吸附/解吸 时间)/min | 重复利用 次数 | 文献 |
---|---|---|---|---|---|---|---|---|
聚丙烯纤维(PP) | 二甲苯 二甲苯 | 25 25 | 10.9 115.45mg·g-1① | — | — | —/— —/— | — — | [ |
苯乙烯接枝的聚丙烯纤维(PP-g-St) | 二甲苯 二甲苯 | 25 25 | 13.4 513.26mg·g-1① | — | — | —/— —/— | 6次,>90% 初始值 | [ |
丙烯酸甲酯接枝的聚丙烯纤维 (PP-g-MA) | OX、PX | 20 | 21.05、11.32 | — | — | —/— | 10次,>85%初始值 | [ |
丙烯酸丁酯接枝的聚丙烯纤维(PP-g-BA) | OX、PX | 20 | 15.67、15.24 | —/— | 10次,>85%初始值 | |||
聚(甲基丙烯酸甲酯-丙烯酸丁酯)/ATP- Fe3O4磁性复合树脂 | 二甲苯 | 室温 | 23.8 | — | 拟一级 | 420/— | — | [ |
聚丙烯酸-2-乙基己酯树脂(B-PEHA) | 二甲苯 | — | 18.78 | — | — | 50/— | — | [ |
芳香烷氧基硅烷的杂化有机凝胶 | 二甲苯 | — | 3.42 | — | — | 60/40(室温、 空气) | 10次以上 | [ |
丙醇甘油酯与三[3-(三甲氧基硅基)丙基] 异氰尿酸酯(ICS)聚合成的凝胶(GP1500-ICS) | 二甲苯 | — | 4.31 | — | — | 100/50~60 (室温、空气) | 10次以上 | [ |
周期性介孔有机硅(PMO) | PX、OX | 28 | 6.085mg·g-1 6.349mg·g-1② | Langmuir和Redlich-Peterson | 拟一级 | 40/— 60/— | — — | [ |
吸附剂 | 吸附质 | 温度/℃ | 吸油倍率 /g·g-1 | 吸附等温线 模型 | 吸附动力学模型 | (吸附/解吸 时间)/min | 重复利用 次数 | 文献 |
---|---|---|---|---|---|---|---|---|
聚丙烯纤维(PP) | 二甲苯 二甲苯 | 25 25 | 10.9 115.45mg·g-1① | — | — | —/— —/— | — — | [ |
苯乙烯接枝的聚丙烯纤维(PP-g-St) | 二甲苯 二甲苯 | 25 25 | 13.4 513.26mg·g-1① | — | — | —/— —/— | 6次,>90% 初始值 | [ |
丙烯酸甲酯接枝的聚丙烯纤维 (PP-g-MA) | OX、PX | 20 | 21.05、11.32 | — | — | —/— | 10次,>85%初始值 | [ |
丙烯酸丁酯接枝的聚丙烯纤维(PP-g-BA) | OX、PX | 20 | 15.67、15.24 | —/— | 10次,>85%初始值 | |||
聚(甲基丙烯酸甲酯-丙烯酸丁酯)/ATP- Fe3O4磁性复合树脂 | 二甲苯 | 室温 | 23.8 | — | 拟一级 | 420/— | — | [ |
聚丙烯酸-2-乙基己酯树脂(B-PEHA) | 二甲苯 | — | 18.78 | — | — | 50/— | — | [ |
芳香烷氧基硅烷的杂化有机凝胶 | 二甲苯 | — | 3.42 | — | — | 60/40(室温、 空气) | 10次以上 | [ |
丙醇甘油酯与三[3-(三甲氧基硅基)丙基] 异氰尿酸酯(ICS)聚合成的凝胶(GP1500-ICS) | 二甲苯 | — | 4.31 | — | — | 100/50~60 (室温、空气) | 10次以上 | [ |
周期性介孔有机硅(PMO) | PX、OX | 28 | 6.085mg·g-1 6.349mg·g-1② | Langmuir和Redlich-Peterson | 拟一级 | 40/— 60/— | — — | [ |
吸附材料名称 | 基体 | 改性剂或方法 | 水接触角/(°) | 吸附质 | 吸附能力 | 重复利用性 | 文献 |
---|---|---|---|---|---|---|---|
超疏水亲油性 丝素纤维 | 丝素纤维 (蚕茧去除黏胶丝胶蛋白得到) | 十八烷基胺 | 150 | 二甲苯 | 55.24 g·g-1 | 5次循环后吸附能力 保持为初始值的93% | [ |
超疏水海绵 | 聚氨酯海绵 | 疏水性二氧化硅纳米颗粒 和聚氟硼烷(PFW) | 156 | 二甲苯 | — | 400次压缩实验后,超疏水性 和弹性保持不变 | [ |
弹性超疏水二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 两步溶胶-凝胶法 | >150 | 二甲苯 | 20.37 g·g-1 | — | [ |
疏水性二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 溶胶-凝胶法 | 173 | 二甲苯 | 2.54 g·g-1 | — | [ |
PVDF/Si-R杂化中空纤维膜 | 聚偏二氟乙烯(PVDF)、 疏水二氧化硅溶胶 | 喷湿纺丝工艺 | 126 | 二甲苯 | 82.3%① | — | [ |
吸附材料名称 | 基体 | 改性剂或方法 | 水接触角/(°) | 吸附质 | 吸附能力 | 重复利用性 | 文献 |
---|---|---|---|---|---|---|---|
超疏水亲油性 丝素纤维 | 丝素纤维 (蚕茧去除黏胶丝胶蛋白得到) | 十八烷基胺 | 150 | 二甲苯 | 55.24 g·g-1 | 5次循环后吸附能力 保持为初始值的93% | [ |
超疏水海绵 | 聚氨酯海绵 | 疏水性二氧化硅纳米颗粒 和聚氟硼烷(PFW) | 156 | 二甲苯 | — | 400次压缩实验后,超疏水性 和弹性保持不变 | [ |
弹性超疏水二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 两步溶胶-凝胶法 | >150 | 二甲苯 | 20.37 g·g-1 | — | [ |
疏水性二氧化硅气凝胶 | 甲基三甲氧基硅烷(MTMS) | 溶胶-凝胶法 | 173 | 二甲苯 | 2.54 g·g-1 | — | [ |
PVDF/Si-R杂化中空纤维膜 | 聚偏二氟乙烯(PVDF)、 疏水二氧化硅溶胶 | 喷湿纺丝工艺 | 126 | 二甲苯 | 82.3%① | — | [ |
1 | 隆众石化数据库 . 二甲苯进出口数据[EB/OL]. [2018-09-05] . |
Oilchem . Import and export of xylene[EB/OL]. [2018-09-05] . | |
2 | 李春柱 . 国外事故案例[J]. 安全、健康和环境, 2002 (12): 33. |
LI C Z . Foreign accident cases[J]. Safety Health & Environment, 2002(12): 33. | |
3 | 谭林 . 深汕高速11吨二甲苯泄漏4人中毒[N]. 南方都市报, 2007-06-23. |
TAN L . 11 Tons of xylene leaks from the Shenzhen-Shantou Expressway, 4 people were poisoned[N]. Southern Metropolis Daily, 2007-06-23. | |
4 | 中国化学品安全协会 . 二甲苯[EB/OL]. 2007 [2018-09-05]. . |
China Chemical Safety Association . Xylene[EB/OL]. 2007[2018-09-05]. . | |
5 | DUAN W Y , MENG F P , WANG F F , et al . Environmental behavior and eco-toxicity of xylene in aquatic environments: a review[J]. Ecotoxicology and Environmental Safety, 2017, 145: 324-332. |
6 | AGREEMENT B . Bonn agreement: counter-pollution manual[M]. UK, London, Bonn Agreement Secretariat, 1994: 112-116. |
7 | ALBERT E . Revised GESAMP hazard evaluation procedure for chemical substances carried by ships[M]. International Maritime Organization. 2nd edition. UK: Polestar Wheatons Ltd., 2013: 21-61. |
8 | Helsinki Commission Baltic Marine Environment Protection Commission . HELCOM manual on co-operation in response to marine pollution within the framework of the convention on the protection of the marine environment of the baltic sea area[R]. Finland: Helsinki Convention, 2002: 50-60. |
9 | 张鹤清, 胡洪营, 席劲瑛 . 6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能[J]. 环境科学, 2003 (6): 83-89. |
ZHANG H Q , HU H Y , XI J Y . Aerobic biodegradation performance of six volatile organic compounds by activated sludge acclimated with toluene[J]. Environmental Science, 2003 (6): 83-89. | |
10 | 陈佩, 颜家保, 武文丽,等 . 邻二甲苯高效降解菌的分离及其降解特性[J]. 化工进展, 2016, 35(2): 565-569. |
CHEN P , YAN J B , WU W L , et al . Separation and biodegradation characteristics of a o-xylene degrading strain[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 565-569. | |
11 | 罗洁 . 超疏水-超亲油泡沫铜的制备及油水分离研究[D]. 大连: 大连理工大学, 2016. |
LUO J . Fabrication of superhydrophobic-superoleophilic Cu foam and research on oil/water separation[D]. Dalian: Dalian University of Technology, 2016. | |
12 | WEEBER J L , BOWMAN R S , KATZ L E , et al . BTEX removal from produced water using surfactant-modified zeolite[J]. Journal of Environmental Engineering, 2005, 131(3): 434-442. |
13 | SIMPSON J A , BOWMAN R S . Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite[J]. Journal of Contaminant Hydrology, 2009, 108(1): 1-11. |
14 | 郭承义 . 内河水上搜救行动中化学品船突发事故的应急处置[J]. 中国水运, 2011 (3): 24-25. |
GUO C Y . Emergency handling of chemical ship accidents in inland water search and rescue operations[J]. China Water Transport, 2011 (3): 24-25. | |
15 | TIC W J, PIJAROWSKI P M . Characteristics of adsorbents used to remove petroleum contaminants from soil and wastewater[J]. Przemysl Chemiczny, 2015, 94(3): 301-306. |
16 | BANDURA L , WOSZUK A , KOŁODYŃSKA D , et al . Application of mineral sorbents for removal of petroleum substances: a review[J]. Minerals, 2017, 7(3): 37-61. |
17 | BOWMAN R S . Applications of surfactant-modified zeolites to environmental remediation[J]. Microporous & Mesoporous Materials, 2003, 61(1): 43-56. |
18 | AL-GHOUTI M , KHRAISHEH M A M , AHMAD M N M , et al . Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study[J]. Journal of Colloid & Interface Science, 2005, 287(1): 6-13. |
19 | AIVALIOTI M , VAMVASAKIS I , GIDARAKOS E . BTEX and MTBE adsorption onto raw and thermally modified diatomite[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 136-143. |
20 | AIVALIOTI M , PAPOULIAS P , KOUSAITI A , et al . Adsorption of BTEX, MTBE and TAME on natural and modified diatomite[J]. Journal of Hazardous Materials, 2012, 207/208: 117-127. |
21 | BANDURA L , KOŁODYŃSKA D , FRANUS W . Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash[J]. Process Safety & Environmental Protection, 2017, 109: 214-223. |
22 | SZALA B , BAJDA T , MATUSIK J , et al . BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA[J]. Microporous & Mesoporous Materials, 2015, 202: 115-123. |
23 | SEIFI L , TORABIAN A , KAZEMIAN H , et al . Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles[J]. Water Air & Soil Pollution, 2011, 219(1/2/3/4): 443-457. |
24 | NOURMORADI H , NIKAEEN M , KHIADANI M . Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: equilibrium, kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2012, 191(19): 341-348. |
25 | NOURMORADI H , KHIADANI M , NIKAEEN M . Multi-component adsorption of benzene, toluene, ethylbenzene, and xylene from aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide[J]. Journal of Chemistry, 2013, 2013(1/2/3/4): 89-94. |
26 | CARVALHO M N , DA M M, BENACHOUR M , et al . Evaluation of BTEX and phenol removal from aqueous solution by multisolute adsorption onto smectite organoclay[J]. Journal of Hazardous Materials, 2012, 239/240(18): 95-101. |
27 | MERLIN F X , LE GUERROUÉ P . Use of sorbents for spill response[M]//Centre of Documentation, Research and Experimentation on accidental water pollution(CEDRE). France: CEDRE, 2009: 27. |
28 | ITOPF (The International Tanker Owners Pollution Federation Limited) . Technical information peper 8: use of sorbent materials in oil spill response[M]. London: ITOPF Ltd., 2011: 1-11. |
29 | SALIU O D , OLATUNJI G A , YAKUBU A , et al . Catalytic crosslinking of a regenerated hydrophobic benzylated cellulose and nano TiO2 composite for enhanced oil absorbency[J]. e-Polymers, 2017, 17(4): 295-302. |
30 | WANG J , ZHENG Y , WANG A . Effect of kapok fiber treated with various solvents on oil absorbency[J]. Industrial Crops & Products, 2012, 40(3): 178-184. |
31 | 刘晓东, 蔡伟杰, 于辛瑶, 等 . 红麻芯基多孔吸油材料的制备及性能[J]. 精细化工, 2018, 35(5): 740-745, 763. |
LIU X D , CAI W J , YU X Y , et al . Preparation and properties of kenaf core-based porous oil-absorbing materials[J]. Fine Chemicals, 2018, 35(5): 740-745, 763. | |
32 | COSTA A S , ROMÃO L P , ARAÚJO B R , et al . Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass[J]. Bioresource Technology, 2012, 105(2): 31-39. |
33 | QIU T , ZENG Y , YE C , et al . Adsorption thermodynamics and kinetics of p-xylene on activated carbon[J]. Journal of Chemical & Engineering Data, 2012, 57(5): 1551-1556. |
34 | 朱洪志 . 文冠果加工剩余物活性碳的制备及对VOC吸附性能研究[D]. 呼和浩特: 内蒙古农业大学, 2014. |
ZHU H Z . Research on preparation and adsorption properties for VOC of activated carbon based on xanthoceras sorbifolia processed residues[D]. Hohhot: Inner Mongolia Agricultural University, 2014. | |
35 | LIM, T-T, HUANG X F . Evaluation of kapok [Ceiba pentandra(L.)Gaertn.] as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup[J]. Chemosphere, 2007, 66(5): 955-963. |
36 | ABDULLAH M A , RAHMAH A U , MAN Z . Physicochemical and sorption characteristics of Malaysian Ceiba pentandra(L.) Gaertn. as a natural oil sorbent[J]. Journal of Hazardous Materials, 2010, 177(1): 683-691. |
37 | 肖红, 于伟东, 施楣梧 . 木棉纤维的基本结构和性能[J]. 纺织学报, 2005, 26(4): 4-6. |
XIAO H , YU W D , SHI M W . Structures and performances of the kapok fiber[J]. Journal of Textile Research, 2005, 26(4): 4-6. | |
38 | KIM J, LEE S S, KHIM J . Peat moss-derived biochars as effective sorbents for VOCs’ removal in groundwater[EB/OL]. Netherlands: Environmental Geochemistry & Health, 2017[2018-09-05]. . |
39 | 刘海弟, 李伟曼, 岳仁亮, 等 . 多微孔活性炭的制备及对二甲苯的吸附研究[J]. 无机化学学报, 2013, 29(9): 1787-1792. |
LIU H D , LI W M , YUE R L , et al . Preparation of active carbon with more micropores and investigation on its xylene-adsorbing ability[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(9): 1787-1792. | |
40 | LENNTECH . Water treatment solutions. Adsorption /active carbon[EB/OL]. [2018-9-5]. . |
41 | BAYAT A , AGHAMIRI S F , MOHEB A , et al . Oil spill cleanup from sea water by sorbent materials[J]. Chemical Engineering Technology, 2005, 28(12): 1525-1528. |
42 | 王璟琳, 刘国宏, 张新荣 . 纳米材料吸附剂的研究进展[J]. 分析化学, 2005, 33(12): 1787-1793. |
WANG J L , LIU G H , ZHANG X R . Recent developments of nanomaterials as sorbents[J]. Chinese Journal of Analytical Chemistry, 2005, 33(12): 1787-1793. | |
43 | JU-NAM Y , LEAD J R . Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications[J]. Science of the Total Environment, 2008, 400(1): 396-414. |
44 | YU F , MA J, WU Y Q . Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl[J]. Frontiers of Environmental Science & Engineering, 2012, 6(3): 320-329. |
45 | SU F , LU C , HU S . Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2010, 353(1): 83-91. |
46 | LU C , SU F , HU S . Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions[J]. Applied Surface Scienc, 2008, 254(21): 7035-7041. |
47 | ABBAS A , ABUSSAUD B A , IHSANULLAH, et al . Adsorption of toluene and paraxylene from aqueous solution using pure and iron oxide impregnated carbon nanotubes: kinetics and isotherms study[J]. Bioinorganic Chemistry and Applications, 2017, 2017: 1-11. |
48 | YU F , MA J, WANG J , et al . Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution[J]. Chemosphere, 2016, 146: 162-172. |
49 | YU F , WU Y , LI X , et al . Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes[J]. Journal of Agricultural & Food Chemistry, 2012, 60(50): 12245-12253. |
50 | 阿拉丁 . 碳纳米管[EB/OL]. [2018-09-05] |
碳纳米管 . | |
Aladdin . Carbon nanotube[EB/OL]. [2018-09-05] | |
碳纳米管 . | |
51 | DHAWAN A , SHARMA V . Toxicity assessment of nanomaterials: methods and challenges[J]. Analytical and Bioanalytical Chemistry, 2010, 398: 589-605. |
52 | JACKSON P , JACOBSEN N R , BAUN A , et al . Bioaccumulation and ecotoxicity of carbon nanotubes[J]. Chemistry Central Journal, 2013, 7: 154-174. |
53 | XU J J , GUO M L , CHEN Q G , et al . Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX[C]// LI Peiyue. IOP Conference Series: Earth and Environmental Science, 3rd International Conference on Water Resource and Environment, WRE 2017. London, UK: Institute of Physics Publishing. 2017: 1-10. |
54 | LI S , WEI J . Radiation synthesis of polypropylene-acrylate grafted fiber and its remediation in the spillage of water-insoluble organic chemicals[J]. Journal of Polymer Research, 2012, 19(3): 1-6. |
55 | FATHY F , SOLIMAN F M . Synthesis and characterization of a high oil-absorbing poly (methyl methacrylate-butyl acrylate)/ATP–Fe3O4 magnetic composite material[J]. American Journal of Polymer Science and Technology ,2016, 2(1): 1-10. |
56 | YOO S Y, DAUD W M , LEE M G . Preparation of a biodegradable oil absorber and its biodegradation[J]. Bioprocess & Biosystems Engineering, 2012, 35(1/2): 283-288. |
57 | DURGUN M , AYDIN G O , SONMEZ H B . Aromatic alkoxysilane based hybrid organogels as sorbent for toxic organic compounds, fuels and crude oil[J]. Reactive & Functional Polymers, 2017, 115: 63-72. |
58 | KIZIL S , BULBUL S H . Oil loving hydrophobic gels made from glycerol propoxylate: efficient and reusable sorbents for oil spill clean-up[J]. Journal of Environmental Management, 2017, 196: 330-339. |
59 | MOURA C P , VIDAL C B , BARROS A L , et al . Adsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodic mesoporous organosilica[J]. Journal of Colloid & Interface Science, 2011, 363(2): 626-634. |
60 | ZHANG X , SHI F , NIU J , et al . Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18: 621-633. |
61 | 党钊, 刘利彬, 向宇, 等 . 超疏水-超亲油材料在油水分离中的研究进展[J]. 化工进展, 2016, 35(s1): 216-222. |
DANG Z , LIU L B , XIANG Y , et al . Progress of superhydrophobic-superoleophilic materials for oil/water separation[J]. Chemical Industry and Engineering Progress, 2016, 35(s1): 216-222. | |
62 | 邱文莲, 贾伟灿, 徐都, 等 . 超疏水材料制备及其在油水分离中的应用研究进展[J]. 材料科学与工程学报, 2016, 34(3): 508-512. |
QIU W L , JIA W C , XU D , et al . Progress in fabrication of superhydrophobic materials and their application in oil-water separation[J]. Journal of Materials Science and Engineering, 2016, 34(3): 508-512. | |
63 | 梁宁宁, 辛振祥, 夏琳 . 聚合物基超疏水材料制备技术的研究进展[J]. 高分子通报, 2014 (9): 25-30. |
LIANG N N , XIN Z Y , XIA L . The research progress in preparation technology of polymer super-hydrophobic material[J]. Chinese Polymer Bulletin, 2014(9): 25-30. | |
64 | XIAO Z , ZHANG M , FAN W , et al . Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices[J]. Chemical Engineering Journal, 2017, 326: 640-646. |
65 | 祝青, 刘慧慧, 肖春, 等 . 超疏水海绵和氧化硅的制备及复合油水分离性能研究[J]. 功能材料, 2017, 48(2): 02074-02079. |
ZHU Q , LIU H H , XIAO C , et al . Fabrication and composite oil-water separation performance for superhydrophobic sponge and silica powder[J]. Journal of Functional Materials, 2017, 48(2): 02074-02079. | |
66 | ZHOU Y , WANG Y , LIU T , et al . Superhydrophobic hBN-regulated sponges with excellent absorbency fabricated using a green and facile method[J]. Scientific Reports, 2017, 7: 45065-45074. |
67 | PHAM V H , DICKERSON J H . Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14181-14188. |
68 | WANG C , YAO T , WU J , et al . Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation[J]. ACS Applied Materials & Interfaces, 2009, 1(11): 2613. |
69 | PATOWARY M , PATHAK K , ANANTHAKRISHNAN R . Robust superhydrophobic and oleophilic silk fibers for selective removal of oil from water surfaces[J]. RSC Advances, 2016, 6(77): 73660-73667. |
70 | GE B , MEN X, ZHU X , et al . A superhydrophobic monolithic material with tunable wettability for oil and water separation[J]. Journal of Materials Science, 2015, 50(6): 2365-2369. |
71 | VENKATESWARA R A , HEGDE N D , HIRASHIMA H . Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels[J]. Journal of Colloid & Interface Science, 2007, 305(1): 124-132. |
72 | NOVAK Z , CERNCIC S , KNEZ Z . Hydrophobic silica aerogel-solvent removal from water[C]//Perrut, Michel. In Proceedings of 10th European Meeting on Supercritical Fluid. Colmar, France: International Society for the Advancement of Supercritical Fluids, 2005: 1-10. |
73 | ZHA S , ZHANG G , DAWSON N , et al . Study of PVDF/Si-R hybrid hollow fiber membranes for removal of dissolved organics from produced water by membrane adsorption[J]. Separation & Purification Technology, 2016, 163: 290-299. |
74 | 屈孟男, 马利利, 何金梅, 等 . 特异润湿型油水分离材料的研究进展[J]. 材料导报, 2017, 31(19): 152-161. |
QU M N , MA L L, HE J M , et al . Research progress of specific wetting oil-water separation materials[J]. Materials Review, 2017, 31(19): 152-161. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[5] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[6] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[8] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[11] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[12] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[15] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |