Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (S1): 19-28.DOI: 10.16085/j.issn.1000-6613.2018-1476
Previous Articles Next Articles
CHAI Lin, YANG Wenzhe, Liu Bin, Chen Aiqiang
Received:
2018-07-15
Revised:
2018-09-03
Online:
2018-12-13
Published:
2018-11-30
柴琳, 杨文哲, 刘斌, 陈爱强
通讯作者:
刘斌,博士,教授,研究方向为热质传递过程及强化换热技术。
作者简介:
柴琳(1994-),女,硕士研究生,研究方向为热质传递过程及强化换热技术。E-mail:chailinKylin@163.com。
基金资助:
CLC Number:
CHAI Lin, YANG Wenzhe, Liu Bin, Chen Aiqiang. Various types of droplet evaporation: summarize[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 19-28.
柴琳, 杨文哲, 刘斌, 陈爱强. 多种类型液滴蒸发综述[J]. 化工进展, 2018, 37(S1): 19-28.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1476
[1] YOUNG T. Ⅲ. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. [2] FUKATANI Y, OREJON D, KITA Y, et al. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation[J]. Physical Review E, 2016, 93(4-1):043103. [3] POMPE T, HERMINGHAUS S. Three-phase contact line energetics from nanoscale liquid surface topographies[J]. Physical Review Letters, 2000, 85(9):1930-1933. [4] JERISON E R, XU Y, WILEN L A, et al. Deformation of an elastic substrate by a three-phase contact line.[J]. Physical Review Letters, 2011, 106(18):186103-4. [5] OREJON D, SHANAHAN M E R, TAKATA Y, et al. Kinetics of evaporation of pinned nanofluid volatile droplets at subatmospheric pressures[J]. Langmuir, 2016, 32(23):5812-5820. [6] SEFIANE K. Patterns from drying drops[J]. Advances in Colloid & Interface Science, 2014, 206(2):372-381. [7] BARDALL A, DANIELS K E, SHEARER M. Deformation of an elastic substrate due to a resting sessile droplet[J]. European Journal of Applied Mathematics, 2018, 29(2):281-300. [8] PICKNETT R G, BEXON R. Evaporation of sessile or pendant drops in still air[J]. Journal of Colloid & Interface Science, 1977, 61(2):336-350. [9] TONINI S, COSSALI G E. An analytical model of liquid drop evaporation in gaseous environment[J]. International Journal of Thermal Sciences, 2012, 57(57):45-53. [10] SAZHIN S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy & Combustion Science, 2006, 32(2):162-214. [11] HOLYST R. Evaporation processes:100 years of misconceptions[J]. Chemical Engineer -London then Rugby, 2008;806:36-37. [12] FENWICK E, MAXWELL J C. A bibliography of James Clerk Maxwell. Part 1[M]. Edinburgh:Edward Fenwick, 2009. [13] ERBIL H Y. ChemInform abstract:evaporation of pure liquid sessile and spherical suspended drops:a review[J]. Advances in Colloid & Interface Science, 2012, 43(16):67-86. [14] PICKNETT R G, BEXON R. Evaporation of sessile or pendant drops in still air[J]. Journal of Colloid & Interface Science, 1977, 61(2):336-350. [15] ALSAN MERIC R, YILDIRIM ERBIL H. Evaporation of sessile drops on solid surfaces:pseudospherical cap geometry[J]. Langmuir, 1998, 14(7):1915-1920. [16] LANGMUIR I. The Evaporation of small spheres[J]. Physical Review, 1918, 12(5):368-370. [17] TOPLEY BRYAN, ROBERT WHYTLAW-GRAY LXXX. Experiments on the rate of evaporation of small spheres as a method of determining diffusion coefficients. â" the diffusion coefficient of iodine[J]. Philosophical Magazine, 1927, 4(24):873-888. [18] GUDRIS N, KULIKOWA L. Die verdampfung kleiner wassertropfen[J]. Zeitschrift Für Physik, 1924, 25(1):121-132. [19] HOUGHTON H G. A study of the evaporation of small water drops[J]. Physics, 1933, 4(12):419-424. [20] DAVIS E J, SCHWEIGER G. Background[M]//The Airborne Microparticle. Springer Berlin Heidelberg, 2002:1-65. [21] BRADLEY R S, EVANS M G, WHYTLAWGRAY R W. The rate of evaporation of droplets; evaporation and diffusion coefficients, and vapour pressures of dibutyl phthalate and butyl stearate[J]. Proceedings of the Royal Society of London, 1946, 186(1006):368-390. [22] DAVIS E J, SCHWEIGER G. The airborne microparticle[M]. Berlin:Springer 2013. [23] BRADLEY R S, SHELLARD A D. The rate of evaporation of droplets. Ⅲ. Vapour pressures and rates of evaporation of straight-Chain paraffin hydrocarbons[J]. Proceedings of the Royal Society of London, 1949, 198(1053):239-251. [24] FREEBAIRN D, LINTON D, HARKINJONES E, et al. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces[J]. Expert Rev Med Devices, 2013, 10(1):85-103. [25] MATAR O, CRASTER R, SEFIANE K. Pinning, retraction and terracing of evaporating droplets containing nanoparticles[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2009, 25(6):3601-36019. [26] KIM J H, AHN S I, KIM J H, et al. Evaporation of water droplets on polymer surfaces.[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2007, 23(11):6163-6169. [27] BUFFONE C, SEFIANE K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores[J]. International Journal of Multiphase Flow, 2004, 30(9):1071-1091. [28] SHAHIDZADEHBONN N, RAFAI S, AZOUNI A, et al. Evaporating droplets[J]. Journal of Fluid Mechanics, 2006, 549:307-313. [29] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653):827-829. [30] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop[J]. Phys. Rev. E, 2000, 62(1PtB):756-765. [31] GHASEMI H, WARD C A. Energy transport by thermocapillary convection during sessile-water-droplet evaporation[J]. Physical Review Letters, 2010, 105(13):136102-4. [32] BUFFONE C, SEFIANE K, CHRISTY J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry[J]. Physics of Fluids, 2005, 17(5):1261-129. [33] CHRISTY J R, HAMAMOTO Y, SEFIANE K. Flow transition within an evaporating binary mixture sessile drop[J]. Physical Review Letters, 2011, 106(20):205701. [34] HAMAMOTO Y, CHRISTY J R E, SEFIANE K. The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate[J]. Journal of Thermal Science & Technology, 2012, 7(3):425-436. [35] 金艳艳, 单彦广. 水-乙醇二元混合固着液滴的蒸发特性[J]. 化工学报, 2018, 69(7):2908-2915. [36] CHIANG C K, LU Y W. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces[J]. Journal of Micromechanics & Microengineering, 2011, 21(7):075003. [37] HOPKINS R J, REID J P. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets[J]. Journal of Physical Chemistry B, 2006, 110(7):3239-3249. [38] CHEN X, WEIBEL J A, GARIMELLA S V. Water and ethanol droplet wetting transition during evaporation on omniphobic surfaces[J]. Scientific Reports, 2015, 5:17110. [39] HOPKINS R J, REID J P. Evaporation of ethanol/water droplets:examining the temporal evolution of droplet size, composition and temperature[J]. Journal of Physical Chemistry A, 2005, 109(35):7923-7931. [40] 王茉, 刘璐, 王鹏程, 等. 乙醇溶液液滴降压蒸发过程传热传质特性[J]. 化工进展, 2016, 35(3):717-721. [41] MORIKAWA A, KEⅡ T. Change in interfacial tension during mass transfer-I.:Evaporation of n-propyl alcohol from its aqueous pendant drop[J]. Chemical Engineering Science, 1965, 20(3):255-259. [42] HAMAMOTO Y, CHRISTY J R E, SEFIANE K. The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate[J]. Journal of Thermal Science & Technology, 2012, 7(3):425-436. [43] 张文彬, 廖龙光, 于同旭, 等. 溶液液滴蒸发变干的环状沉积[J]. 物理学报, 2013, 62(19):361-368. [44] WU S, LI W B, SHI F, et al. Observation of colloidal particle deposition during the confined droplet evaporation process[J]. Acta Physica Sinica, 2015, 64(9):96101-9. [45] SEFIANE K, BENNACER R. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates[J]. Adv. Colloid Interface Sci, 2009, 147(147/148):263-271. [46] HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions.[J]. Journal of Physical Chemistry B, 2006, 110(14):7090-4. [47] ASKOUNIS A, SEFIANE K, KOUTSOS V, et al. The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops[J]. Colloids & Surfaces A, Physicochemical & Engineering Aspects, 2014, 441(3):855-866. [48] ASKOUNIS A, SEFIANE K, KOUTSOS V, et al. Effect of particle geometry on triple line motion of nano-fluid drops and deposit nano-structuring.[J]. Adv. Colloid Interface Sci., 2015, 222:44-57. [49] PARSA M, HARMAND S, SEFIANE K, et al. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2015, 31(11):3354-3367. [50] 刘斌, 单亮亮, 邸倩倩, 等. 底板属性对液滴蒸发过程的影响[J]. 工程热物理学报, 2017(9):1940-1943. [51] 王东民, 董丽宁, 全晓军. 改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热[J]. 化工学报, 2018, 69(10):4200-4205. [52] ASKOUNIS A, SEFIANE K, KOUTSOS V, et al. The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 441(3):855-866. [53] LIU B, BENNACER R, BOUVET A. Evaporation of methanol droplet on the teflon surface under different air velocities[J]. Applied Thermal Engineering, 2011, 31(17):3792-3798. [54] OREJON D, SEFIANE K, SHANAHAN M E R. Evaporation of nanofluid droplets with applied DC potential[J]. J. Colloid Interface Sci., 2013, 407(10):29-38. [55] HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions.[J]. Journal of Physical Chemistry B, 2006, 110(14):7090-4. [56] HE Q, HALLINAN K P. A new particle image velocimetry technique for three-dimensional full field fluid flow measurement in evaporating films[J]. Experimental Thermal & Fluid Science, 1998, 17(3):230-237. [57] HEGSETH J J, RASHIDNIA N, CHAI A. Natural convection in droplet evaporation[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1996, 54(2):1640-1644. [58] STEINCHEN A, SEFIANE K. Self-organised marangoni motion at evaporating drops or in capillary menisci - thermohydrodynamical model[J]. Journal of Non-Equilibrium Thermodynamics, 2005, 40(1):1017-1051. [59] ZHONG Y, ZHUO Y, WANG Z, et al. Marangoni convection induced by simultaneous mass and heat transfer during evaporation of n-heptane/ether binary liquid mixture[J]. International Journal of Heat & Mass Transfer, 2017, 108:812-821. [60] HU Y C, ZHOU Q, YE H M, et al. Peculiar surface profile of poly(ethylene oxide) film with ring-like nucleation distribution induced by marangoni flow effect[J]. Colloids & Surfaces, 2013, 428(13):39-46. [61] HU H, LARSON R G. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2005, 21(9):3972. [62] ZHANF Y J, LIU Z, QIAN Y, et al. Pattern formation mechanism via evaporation of colloidal droplet containing PTFE particles and NaCl[J]. Chemical Journal of Chinese Universities, 2014, 35(6):1258-1266. [63] 马力, 仇性启, 王健, 等. 单液滴蒸发影响因素实验研究[J]. 现代化工, 2013, 33(1):103-106. [64] 刘松, 聂万胜, 苏凌宇, 等. 高温高压环境下煤油液滴蒸发过程实验研究[J]. 火箭推进, 2017, 43(2):25-31. [65] KIM J H, PARK S B, KIM J H, et al. Polymer transports inside evaporating water droplets at various substrate temperatures[J]. J. Phys. Chem. C, 2011, 115(31):15375-15383. [66] 黄镇宇, 殷科, 周志军, 等. 尿素水溶液液滴的蒸发特性[J]. 化工进展, 2014, 33(4):817-823. [67] GAN X, YAO D, WU F, et al. Modeling and simulation of urea-water-solution droplet evaporation and thermolysis processes for SCR systems[J]. Chinese Journal of Chemical Engineering, 2016, 24(8):1065-1073. [68] BALDWIN K A, ROEST S, FAIRHURST D J, et al. Monolith formation and ring-stain suppression in low-pressure evaporation of poly(ethylene oxide) droplets[J]. Journal of Fluid Mechanics, 2012, 695(3):321-329. [69] TEKIN E, SMITH P J, SCHUBERT U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4):703-713. [70] BUFFONE C, COULLOUX J, ALONSO B, et al. Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in loop heat pipes for aeronautics[J]. Experimental Thermal & Fluid Science, 2016, 78:147-152. [71] LIU B, BENNACER R, SEFIANE K, et al. Transient effects in evaporating sessile drops:with and without heating[J]. Journal of Heat Transfer, 2016, 138(9):14. [72] 徐志明, 张一龙, 王景涛, 等. 两种阴离子对析晶污垢沉积的影响[J]. 化工学报, 2015, 66(6):2268-2273. [73] NAYAK N C, SHIN K. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres[J]. Nanotechnology, 2008, 19(26):265603. [74] ABDOLLAHI S N, NADERI M, AMOABEDINY G. Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 436(35):1069-1075. [75] LI X, LI Y, YANG C, et al. Liposome induced self-assembly of gold nanoparticles into hollow spheres[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2004, 20(9):3734-9. [76] EBRAHIMI A, DAK P, SALM E, et al. Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy[J]. Lab on A Chip, 2013, 13(21):4248-56. [77] 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1):128-140. [78] 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7):2641-2652. [79] STEINCHEN A, SEFIANE K, SANFELD A. Nano-encapsulation as high pressure devices for folding-unfolding proteins[J]. Journal of Colloid & Interface Science, 2011, 355(2):509-511. [80] YAKHON T A, SEDOVA O A, SANIN A G, et al. On the existence of regular structures in liquid human blood serum (plasma) and phase transitions in the course of its drying[J]. Technical Physics, 2003, 48(4):399-403. [81] SEFIANE K. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications[J]. Journal of Bionic Engineering, 2010, 7(4):S82-S93. [82] SHABALIN V N, SHATOKHINA S N, DUTOV V V, et al. Method of diagnosing complicated urolithiasis and prognosticating urolithiasis:EP 0504409[P]. 1996. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[4] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[5] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[6] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[7] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[8] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[9] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[10] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[11] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[12] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[13] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[14] | LU Sijia, LI Xiaoliang, ZHAO Huiyan, TIAN Zhijuan, ZHENG Xing. Electrochemical effects on fouling and corrosion of carbon steel in circulating cooling water systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2142-2150. |
[15] | XIE Yingchun, MA Hongting, XU Chang, MA Shuo, CHEN Mo, LIU Jun, SUN Guoqiang. Analysis of heat transfer characteristics in vertical tube of seepage falling film evaporative condenser [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1187-1194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |